芯片上的皮膚:通過自動(dòng)氣液界面測(cè)量跨上皮細(xì)胞層電阻和細(xì)胞外酸化率
翻譯整理:北京佰司特貿(mào)易有限責(zé)任公司
皮膚是人體重要的器官,在保護(hù)人體內(nèi)部器官方面起著至關(guān)重要的作用。因此,人們進(jìn)行了大量的工作來創(chuàng)建人造表皮模型進(jìn)行體外皮膚毒性試驗(yàn)。這些組織模型被稱為重建人表皮細(xì)胞模型(reconstructed human epidermis,RhE),被用于在制藥、化妝品和環(huán)境領(lǐng)域中評(píng)估皮膚暴露于外源性物質(zhì)中的毒性研究。在這里,我們提出了一個(gè)無標(biāo)簽的解決方案,它利用了體外診斷智能移動(dòng)實(shí)驗(yàn)室(intelligent mobile lab for in vitro diagnostics,IMOLA-IVD)。一個(gè)無創(chuàng)、基于傳感器的平臺(tái),檢測(cè)多孔膜上RhE細(xì)胞模型和貼壁細(xì)胞的跨上皮細(xì)胞層電阻(transepithelial electrical resistance,TEER)。首先在聚碳酸酯膜上培養(yǎng)小鼠成纖維細(xì)胞作為測(cè)試模型,使用定制的生物芯片封閉式設(shè)計(jì),以及雙微流道結(jié)構(gòu),用于培養(yǎng)物的連續(xù)和自動(dòng)灌流。檢測(cè)L929細(xì)胞的胞外酸化率(Extracellular acidification rate,EAR)和跨上皮細(xì)胞層電阻(transepithelia lelectrical resistance,TEER)。通過該平臺(tái)監(jiān)測(cè)RhE細(xì)胞模型的TEER超過48小時(shí)。TEER和EAR測(cè)試表明,該平臺(tái)可以長(zhǎng)時(shí)間穩(wěn)定培養(yǎng)芯片上的皮膚細(xì)胞模型,監(jiān)測(cè)代謝參數(shù),以及組織降解。
Keywords:TEER;Organ-on-a-Chip;skin models;reconstructed human epidermis;impedance;label-freemonitoring
1. INTRODUCTION
作為人體最大的器官,皮膚代表著人體內(nèi)部和外部環(huán)境之間的結(jié)構(gòu)學(xué)屏障,將體內(nèi)器官與毒素、病原體隔離開來,并保護(hù)內(nèi)部器官免受紫外線(UV)輻射。除了重要的屏障功能,人體皮膚還執(zhí)行人體的幾個(gè)基本功能,如熱調(diào)節(jié)、感覺和排泄。因?yàn)槠つw是人類抵御外部環(huán)境的影響的第一防護(hù)罩,新的化學(xué)物質(zhì)的研究,如藥物和毒素,必須分析和評(píng)估其對(duì)調(diào)節(jié)皮膚完整性的能力。調(diào)查在這些化合物的影響下,細(xì)胞生物學(xué)利用細(xì)胞培養(yǎng)模型,更深入的研究了解由化學(xué)物質(zhì)調(diào)節(jié)的細(xì)胞行為。在過去的十年里,各種生物工程模型被開發(fā)用于皮膚毒性研究。第一個(gè)皮膚模型基于傳統(tǒng)的二維(2D)共培養(yǎng)模型,角質(zhì)細(xì)胞接種到預(yù)培養(yǎng)的成纖維細(xì)胞上。由于在剛性塑料上培養(yǎng)不能長(zhǎng)時(shí)間維持上皮細(xì)胞,而且阻止了細(xì)胞分層,組織工程界開發(fā)了3D皮膚模型來再現(xiàn)體內(nèi)類似結(jié)構(gòu),并通過整合氣液界面設(shè)計(jì)了一個(gè)更具有生理相關(guān)性的環(huán)境。
人的皮膚由下列初級(jí)層組成,它們具有附屬的功能:表皮層、真皮層和皮下組織。將不同皮膚層整合到細(xì)胞模型中,目前的皮膚模型可分為含角質(zhì)細(xì)胞的重建人表皮模型、含角質(zhì)形成細(xì)胞和成纖維細(xì)胞的代表真皮和表皮隔層的全層模型,以及帶有額外細(xì)胞類型(如黑素細(xì)胞、干細(xì)胞等)的全層模型。由于其結(jié)構(gòu)簡(jiǎn)化,重新構(gòu)造人表皮(RhE)模型具有較高的重現(xiàn)性,因而被廣泛接受。RhE細(xì)胞模型由人源性角質(zhì)細(xì)胞接種在聚碳酸酯半透膜上,并將其納入細(xì)胞培養(yǎng)系統(tǒng),置于標(biāo)準(zhǔn)孔板中,如市售Transwell®系統(tǒng)(Corning Inc.,Corning,NY,USA)。該裝置將培養(yǎng)物放置在氣液界面,皮膚表面暴露在空氣中,形成生理環(huán)境類似的培養(yǎng)條件。目前,有開放的皮膚模型,以及商業(yè)的模型,如EpiDerm™(MatTek體外生命科學(xué)實(shí)驗(yàn)室,Bratislava,斯洛伐克),EpiSkin™(EpiSkin,Lyon Cedex,法國(guó)),SkinEthic™(EpiSkin),EpiCS®(CellSystemsGmbH,Troisdorf,德國(guó)),和LabCyte(日本組織工程有限公司,日本愛知)。ALEXANDRA協(xié)會(huì)遵循非營(yíng)利性和無專利的方法,為制作和測(cè)試開放的3D皮膚模型提供了方案
2. Background
2.1. 基于重構(gòu)人表皮的皮膚毒性試驗(yàn)的最新進(jìn)展
從監(jiān)管角度來看,評(píng)價(jià)和預(yù)測(cè)有毒化合物和藥物對(duì)皮膚的有害影響,3D模型系統(tǒng)必須經(jīng)過一系列廣泛測(cè)試化合物的驗(yàn)證。如果通過歐洲替代方法驗(yàn)證中心 (ECVAM) 證實(shí)和經(jīng)濟(jì)合作與發(fā)展組織(OECD)測(cè)試指南(TG),具有指定測(cè)試技術(shù)的模型就可以作為可接受的工具用于皮膚毒性測(cè)試。到目前為止,OECD提供了用于皮膚腐蝕和刺激的指南測(cè)試的指南,分別基于OECD TG 431和439。
2.2.器官芯片平臺(tái)和微生理測(cè)量
由于目前的模型在生物學(xué)的相關(guān)性上,只提供有限的意義,所以毒理學(xué)領(lǐng)域測(cè)試正朝著實(shí)現(xiàn)器官芯片(Organ-on-Chip,OOC)儀器的方向發(fā)展。器官芯片系統(tǒng)描述了一種包含灌注室的微流體細(xì)胞培養(yǎng)裝置,在生理相關(guān)條件下培養(yǎng)活細(xì)胞。然而,大多數(shù)OOC平臺(tái)仍然嚴(yán)重依賴端點(diǎn)分析方法,缺乏的不同時(shí)間點(diǎn)的測(cè)試方法。此外,化學(xué)標(biāo)簽,如熒光標(biāo)簽可能會(huì)潛在地影響細(xì)胞代謝從而改變實(shí)驗(yàn)結(jié)果。因此,采用無標(biāo)簽技術(shù)的實(shí)時(shí)讀數(shù)的集成設(shè)備,對(duì)于測(cè)量進(jìn)行空間和時(shí)間解析的是非常有意義的。
2.3. 皮膚/重建人表皮的跨上皮細(xì)胞層電阻
由于潛在的有害化合物會(huì)影響皮膚厚度,厚度的測(cè)量也是早期研究的參數(shù)之一。破壞性測(cè)量,例如活組織檢查,或非破壞性測(cè)量,如共焦拉曼光譜儀和超聲波成像。其中最傳統(tǒng)的方法和有用的細(xì)胞培養(yǎng)的應(yīng)用就是測(cè)量皮膚通透性屏障,以評(píng)估上皮或內(nèi)皮組織的活力和功能。在這里,跨上皮細(xì)胞層電阻(TEER)提供了一種無標(biāo)記和快速的技術(shù)來研究皮膚完整性。TEER值測(cè)量了一個(gè)或幾個(gè)細(xì)胞層的電阻。
2.4. 目前跨上皮細(xì)胞層電阻測(cè)量的缺點(diǎn)和跨上皮細(xì)胞層電阻自動(dòng)化測(cè)量的需要
除了微加工方法,還有一些商業(yè)上可用的外部測(cè)試系統(tǒng),如“伏特-歐姆計(jì)”(World Precision Instruments, Sarasota, FL, USA),,它可以現(xiàn)成的。由于缺少與細(xì)胞培養(yǎng)系統(tǒng)的整合,研究人員需要手動(dòng)將細(xì)胞培養(yǎng)物從生物培養(yǎng)箱放到測(cè)量系統(tǒng)。這個(gè)過程缺乏重現(xiàn)性和標(biāo)準(zhǔn)化,也不能提供高通量測(cè)量的能力。雖然下一代的電極室(如Endohm室)可以直接測(cè)量,但是培養(yǎng)基以及試劑都必須手動(dòng)加入,用于長(zhǎng)期培養(yǎng)和藥物研究案例。因此,擴(kuò)展的研究是不可能的,因?yàn)榕f的介質(zhì)不能從培養(yǎng)系統(tǒng)中取出,也沒有自動(dòng)灌注新鮮的培養(yǎng)基?偠灾,目前的TEER測(cè)量系統(tǒng)仍然嚴(yán)重依賴手動(dòng)操作和手持式系統(tǒng),影響了測(cè)量的穩(wěn)定性,從而影響了整體實(shí)驗(yàn)的再現(xiàn)性。經(jīng)濟(jì)合作與發(fā)展組織(OECD)認(rèn)為,一個(gè)可接受的測(cè)試方案,分析重現(xiàn)性是驗(yàn)證中的一個(gè)基本標(biāo)準(zhǔn)。因此,TEER領(lǐng)域通過集成自動(dòng)TEER監(jiān)控和采集,系統(tǒng)能夠在培養(yǎng)基頻繁變化的情況下執(zhí)行編程測(cè)試模式測(cè)量,也可以大大受益。
在此,我們介紹了一種新的自動(dòng)監(jiān)測(cè)測(cè)試系統(tǒng)和采集系統(tǒng)用于TEER測(cè)量,the intelligent mobile lab for in vitro diagnostics (IMOLA-IVD) (cellasys GmbH, Kronburg, Germany)。開發(fā)了一個(gè)密封設(shè)計(jì)的商業(yè)化,用聚碳酸酯膜培養(yǎng)的表皮細(xì)胞RhE細(xì)胞模型。應(yīng)用TEER測(cè)量用于研究RhE培養(yǎng),并集成到自動(dòng)化的流體平臺(tái),可以精確灌注培養(yǎng)基和加藥。此外,我們能夠監(jiān)測(cè)細(xì)胞外酸化率(extracellular acidification rate, EAR)。實(shí)證研究的目的是通過集成自動(dòng)化灌流系統(tǒng)和集成測(cè)試平臺(tái),實(shí)現(xiàn)實(shí)時(shí)動(dòng)力學(xué)測(cè)量,同時(shí)保證測(cè)量穩(wěn)定性。本研究演示了一種評(píng)估皮膚完整性的無創(chuàng)的測(cè)量方法的驗(yàn)證和應(yīng)用。
3.Materials and Methods
3.1. 體外診斷智能移動(dòng)實(shí)驗(yàn)室概述
IMOLA-IVD是一種芯片上的實(shí)驗(yàn)室測(cè)量系統(tǒng),用于自動(dòng)監(jiān)測(cè)L929小鼠成纖維細(xì)胞和EpiDerm™重建人表皮細(xì)胞模型的TEER和EAR。IMOLA-IVD的基本操作已經(jīng)在之前的工作中進(jìn)行了描述,簡(jiǎn)單地說,每個(gè)IMOLA-IVD包括一個(gè)電源、模擬和數(shù)字模塊,以及一個(gè)集成了傳感器的生物芯片,該傳感器被動(dòng)地監(jiān)測(cè)細(xì)胞模型的微環(huán)境。標(biāo)準(zhǔn)的IMOLA-IVD實(shí)驗(yàn)是通過裝載數(shù)據(jù)采集和鏈接應(yīng)用(DALiA)客戶端2.0軟件的個(gè)人計(jì)算機(jī)實(shí)現(xiàn)自動(dòng)化的,以控制一個(gè)蠕動(dòng)泵和連接6個(gè)IMOLA-IVD系統(tǒng)的微流控網(wǎng)絡(luò)。泵在ON和OFF狀態(tài)之間循環(huán)。在OFF泵關(guān)閉周期,細(xì)胞能夠代謝培養(yǎng)基中的營(yíng)養(yǎng)物質(zhì);在ON泵開發(fā)周期,營(yíng)養(yǎng)豐富的培養(yǎng)基被灌流到細(xì)胞中。
3.2 改進(jìn)的BioChip-D小室
生物芯片模塊包含一個(gè)傳感器芯片連接到電路板并連接到一個(gè)圓柱形密封小室,用以保護(hù)芯片的連接并連通細(xì)胞及培養(yǎng)基。一個(gè)流體頭直接連接密封小室,形成一個(gè)液體密封、靜態(tài)微容積(~ 6μL)的反應(yīng)室,在集成的傳感器表面測(cè)量細(xì)胞外酸化率(EAR)和氧合作用 (圖1a)。然而,需要測(cè)量RhE的情況下,多孔膜上培養(yǎng)的細(xì)胞不適合標(biāo)準(zhǔn)生物芯片或標(biāo)準(zhǔn)的IMOLA-IVD叉指電極傳感器(IDES)測(cè)量阻抗。為了克服這些限制,新的密封小室和流體頭的設(shè)計(jì),以保持空氣-液體使用Pro/Engineer Wildfire 4.0 (PTC Inc., Needham, MA, USA)。封裝用Ultimaker 2 (Ultimaker BV,Geldermalsen,Netherlands),使用聚乳酸(PLA)和硅橡膠醫(yī)用粘合劑(Corning Inc., New York, NY, USA)連接到生物芯片BioChip。重新設(shè)計(jì)的BioChip小室適用于擴(kuò)大培養(yǎng)室和其他多孔膜上培養(yǎng)的細(xì)胞(圖1b)的RhE。
3.3. L929細(xì)胞與重建人表皮細(xì)胞的制備與培養(yǎng)
記錄小鼠成纖維細(xì)胞(L929)和重建人表皮細(xì)胞(RhE)的跨上皮細(xì)胞層電阻值。L929細(xì)胞在加10%胎牛血清(FBS) 和10 μg/ml gentamycin (Thermo Fisher,Waltham, MA, USA)。細(xì)胞按照標(biāo)準(zhǔn)的實(shí)驗(yàn)室規(guī)范(GLP)培養(yǎng),并保存于37℃和5%的培養(yǎng)箱中培養(yǎng)后,在95%融合度時(shí),細(xì)胞傳代,100,000細(xì)胞種在12mm Transwell®上,孔徑3 μm的多孔膜(Corning In)。transwell隨后被放置在6孔板上,并在1ml DMEM中再孵育24小時(shí),然后轉(zhuǎn)移到modified BioChips中。
L929細(xì)胞是我們實(shí)驗(yàn)室的標(biāo)準(zhǔn)細(xì)胞系,用于驗(yàn)證實(shí)驗(yàn)。將EpiDerm™RhE細(xì)胞模型轉(zhuǎn)移到6孔板上,并在5.5mm/5mL的MatTek無血清長(zhǎng)期培養(yǎng)基(#EPI-100-NMM-250) (MatTek體外壽命科學(xué)實(shí)驗(yàn)室)。每48小時(shí)交換一次培養(yǎng)基,直到轉(zhuǎn)移到BioChips中對(duì)三通實(shí)驗(yàn)。實(shí)驗(yàn)開始前24 h,將培養(yǎng)基減少到0.9 mL然后放在12個(gè)盤子里。Modified BioChip-D在70%乙醇中室溫滅菌處理20 min后,用無菌去離子水沖洗。生物芯片灌注無緩沖DMEM處理24 h以穩(wěn)定溫度,然后將膜培養(yǎng)物放置在芯片上。
3.4. 自動(dòng)化灌流系統(tǒng)的介紹
設(shè)計(jì)了一種自動(dòng)灌流系統(tǒng)來自動(dòng)化監(jiān)測(cè)在生物芯片上培養(yǎng)48小時(shí)以上的RhE細(xì)胞模型的TEER。該系統(tǒng)由兩個(gè)流體模塊(FM)組成,通過與Tygon® E-3603 (ProLiquid GmbH, Ueberlingen, Germany)管道連接成獨(dú)立的管道。這些獨(dú)立的網(wǎng)絡(luò)通過IMOLA-IVD泵標(biāo)準(zhǔn)設(shè)置的ON/OFF開關(guān)程序,向基底細(xì)胞提供營(yíng)養(yǎng)豐富的細(xì)胞培養(yǎng)基,并定期向Transwell®膜的頂部區(qū)域,泵入磷酸鹽緩沖鹽溶液(PBS)。如圖2所示。介質(zhì)傳輸模塊在無緩沖的DMEM和0.2%SDS的培養(yǎng)基之間切換,提供給膜底部的細(xì)胞。TEER測(cè)量模塊連接到PBS進(jìn)行TEER測(cè)量或測(cè)試可用于接種RhE表面的水溶性測(cè)試物。
L929細(xì)胞培養(yǎng)在多孔膜小室上,RhE細(xì)胞模型培養(yǎng)在Modified BioChip-D上,通過無緩沖的DMEM與灌流泵進(jìn)行36小時(shí)周期的培養(yǎng)。對(duì)于L929細(xì)胞,為監(jiān)測(cè)細(xì)胞酸化,泵ON時(shí)間為5分鐘,而泵OFF時(shí)間為5分鐘、10分鐘、30分鐘和55分鐘。對(duì)于RhE細(xì)胞模型,泵時(shí)間為5分鐘ON, 10分鐘OFF, 5分鐘ON, 25分鐘OFF, 5分鐘ON, 10分鐘OFF。在25分鐘的泵OFF階段,通過將PBS泵入膜頂部小室,在芯片上的阻抗傳感器和流體頭部的導(dǎo)線電極之間建立電路連接,記錄TEER測(cè)量。以60 μL/min的速度將750 μL的PBS泵到芯片上的膜上,然后以120μL/min的速度去除。TEER測(cè)量是在25分鐘泵關(guān)閉期間進(jìn)行的。在預(yù)定的穩(wěn)定測(cè)量周期后(L929細(xì)胞和RhE細(xì)胞模型分別為47和36小時(shí)),將0.2% SDS無緩沖DMEM泵入芯片作為陽性對(duì)照。用SDS培養(yǎng)基灌注至少12小時(shí),以證實(shí)對(duì)照組對(duì)測(cè)得的TEER的影響。
4. Results and Discussion
4.1. 重新設(shè)計(jì)的經(jīng)上皮電阻封裝功能
將多孔膜插入培養(yǎng)室,確定培養(yǎng)室體積為~170 μL。介質(zhì)通過膜下形成的入口孔灌注到腔內(nèi),膜底部的孔允許新鮮營(yíng)養(yǎng)物質(zhì)被動(dòng)地?cái)U(kuò)散到細(xì)胞的基底層和細(xì)胞的廢物擴(kuò)散出細(xì)胞。在泵ON循環(huán)期間,營(yíng)養(yǎng)消耗后的培養(yǎng)基泵出腔室(圖2)。RhE培養(yǎng)物的頂端表面暴露于環(huán)境空氣中,經(jīng)過長(zhǎng)時(shí)間的培養(yǎng),刺激分化成一個(gè)ALI的分層。為了測(cè)量這些培養(yǎng)物的TEER,重新設(shè)計(jì)的流體頭包含一個(gè)雙向入口/出口閥,周期性地分配一定量的PBS溶液。這種解決方案連接多孔膜頂端腔的導(dǎo)線電極(見圖1b)和傳感器芯片上的平面IDES電極之間的電路。溢流閥使TEER電極淹沒在穩(wěn)定的介質(zhì)體積中,防止溢流。連續(xù)5分鐘記錄膜的TEER,然后在測(cè)量之后取出PBS以維持ALI。
4.2. 小鼠成纖維細(xì)胞的胞外酸化率的測(cè)定
使用自動(dòng)測(cè)量協(xié)議監(jiān)測(cè)EAR,將L929細(xì)胞生長(zhǎng)在聚碳酸酯膜。用未緩沖的DMEM以50 μL/min的速率灌注L929細(xì)胞。圖3顯示了在泵交替階段測(cè)量的pH值(以mV為單位)。紅色條表示泵OFF階段,灌流新鮮培養(yǎng)基,細(xì)胞活躍地將營(yíng)養(yǎng)物質(zhì)代謝為酸性廢物,生物芯片上的金屬氧化物傳感器會(huì)檢測(cè)到這些代謝物。綠色條表示泵ON階段。在此階段中,膜底部灌注新鮮培養(yǎng)基,提供營(yíng)養(yǎng)給膜上培養(yǎng)的細(xì)胞。從圖中可以看出,當(dāng)介質(zhì)酸化時(shí),泵OFF55分鐘時(shí),電壓會(huì)增加~5 mV,而較短的時(shí)間內(nèi)不會(huì)產(chǎn)生明顯的電壓變化。
4.3. 小鼠成纖維細(xì)胞對(duì)十二烷基硫酸鈉培養(yǎng)基的代謝反應(yīng)
一旦泵ON周期結(jié)束,測(cè)量的電壓迅速下降,直到達(dá)到基線(穩(wěn)態(tài))值。在下降之前存在一個(gè)短暫的延遲,這可能是由于新鮮培養(yǎng)基與芯片上已有的酸化培養(yǎng)基之間的混合導(dǎo)致的,因?yàn)槌隹诘奈恢酶哂谶M(jìn)口。在58小時(shí),測(cè)量的信號(hào)下降。這可能是由于細(xì)胞膜破裂和細(xì)胞內(nèi)內(nèi)容物釋放到培養(yǎng)基中。在56小時(shí),細(xì)胞已經(jīng)溶解,因此不會(huì)產(chǎn)生廢物酸化周圍的介質(zhì),導(dǎo)致在55分鐘泵OFF階段信號(hào)變平坦。圖4描述了在實(shí)驗(yàn)持續(xù)時(shí)間55分鐘OFF階段持續(xù)測(cè)量EAR?梢钥闯,加入SDS后,EAR突增,然后迅速降至零以下,表明細(xì)胞裂解。然后它逐漸趨近于零,直到實(shí)驗(yàn)結(jié)束。
4.4. 小鼠成纖維細(xì)胞的TEER(跨上皮細(xì)胞層電阻)監(jiān)測(cè)
除了監(jiān)測(cè)L929細(xì)胞的代謝率,在25分鐘泵OFF期間還可以監(jiān)測(cè)TEER值。在TEER測(cè)量過程中,隨著PBS泵入測(cè)量小室以連接電路進(jìn)行測(cè)量,數(shù)值會(huì)發(fā)生變化。TEER開始無數(shù)值,因?yàn)殡姌O對(duì)之間存在短路。嵌入在流體頭的導(dǎo)線電極浸入PBS中,與膜下的芯片上的導(dǎo)電電極一起連接形成電路。PBS在細(xì)胞上停留5分鐘,泵OFF以進(jìn)行穩(wěn)定監(jiān)測(cè)。然后PBS被泵出測(cè)量小室,直到下一個(gè)測(cè)量循環(huán)。
圖4顯示了從25小時(shí)開始測(cè)量的EAR和TEER。在泵OFF階段,EAR由線性回歸計(jì)算。表1總結(jié)了SDS加入前和加入后的結(jié)果。實(shí)驗(yàn)開始24小時(shí)后,實(shí)測(cè)的實(shí)數(shù)阻抗穩(wěn)定在190歐姆附近,虛部阻抗為-40歐姆。因?yàn)橐阎狶929小鼠成纖維細(xì)胞在培養(yǎng)中保持單層,預(yù)計(jì)阻抗將穩(wěn)定在一個(gè)低水平。暴露于0.2% SDS培養(yǎng)基8小時(shí)后(時(shí)間為第 56小時(shí)),實(shí)數(shù)阻抗下降14.8%,對(duì)應(yīng)加入SDS導(dǎo)致的細(xì)胞死亡。虛部阻抗下降6.11%。這些結(jié)果表明,開發(fā)的密封設(shè)計(jì)和泵模塊能夠進(jìn)行自動(dòng)化阻抗測(cè)量。
4.4. RhE細(xì)胞模型的TEER(跨上皮細(xì)胞層電阻)監(jiān)測(cè)
使用上述相同的設(shè)置對(duì)重建人表皮細(xì)胞模型(reconstructed human epidermis,RhE)進(jìn)行連續(xù)監(jiān)測(cè)TEER約50小時(shí)。在前12小時(shí),TEER值保持相對(duì)穩(wěn)定,如圖5所示。在36小時(shí)后,用0.2% SDS處理細(xì)胞后2小時(shí),平均TEER值突然下降。SDS培養(yǎng)基加入前,TEER值最初是尖峰的,在用PBS加入頂端腔后,然后迅速穩(wěn)定并保持,直到5分鐘的測(cè)量周期結(jié)束。當(dāng)從上部小室中移除培養(yǎng)基后,由于電路短路,TEER再次變成無數(shù)值。
在換到SDS培養(yǎng)基2小時(shí)后,TEER曲線的變化就可以被檢測(cè)到。起初,TEER值與接種SDS培養(yǎng)基前相同。但是TEER值在測(cè)量期間穩(wěn)步下降,直到穩(wěn)定在一個(gè)更低的值。這導(dǎo)致測(cè)得的平均TEER降低,這與添加SDS引起的細(xì)胞裂解相對(duì)應(yīng)。此外,隨著SDS培養(yǎng)基加入時(shí)間的增加,阻抗的初始峰幅值減小。盡管暴露于SDS,最初的峰值的持續(xù)似乎表明細(xì)胞存活。值得注意的是,以前的IMOLA-IVD研究是在簡(jiǎn)單的單層細(xì)胞上進(jìn)行的,相對(duì)較低濃度的0.2% SDS就可以較短的時(shí)間內(nèi)完全殺死細(xì)胞。而正是嚴(yán)重細(xì)胞的緩慢裂解可能歸因于更復(fù)雜的3D皮膚模型中培養(yǎng)的細(xì)胞的生命活力的增強(qiáng)。
5. Conclusions
在這里,我們提出了一種創(chuàng)新的方法,以非侵入性監(jiān)測(cè)細(xì)胞培養(yǎng)在二維和三維多孔膜在各種形態(tài)。我們最先進(jìn)的生物芯片密封設(shè)計(jì)被證明支持小鼠成纖維細(xì)胞的單層,以及更復(fù)雜的重建人表皮細(xì)胞模型(reconstructed human epidermis,RhE)。此外,設(shè)計(jì)了一個(gè)兩部分的自動(dòng)化流體系統(tǒng),處理將PBS溶液輸送和加入到頂部腔室進(jìn)行TEER測(cè)量。使用L929細(xì)胞,設(shè)計(jì)了一個(gè)標(biāo)準(zhǔn)的操作方法,通過定期測(cè)量TEER來監(jiān)測(cè)代謝率和屏障完整性。SDS培養(yǎng)基加入之前保持的細(xì)胞活力,作為陽性對(duì)照。
在用L929細(xì)胞進(jìn)行初步試驗(yàn)后,對(duì)重建人表皮細(xì)胞模型的TEER進(jìn)行監(jiān)測(cè)。TEER值顯示皮膚模型可以培養(yǎng)至少24小時(shí),加入SDS培養(yǎng)基后的細(xì)胞裂解也會(huì)延遲。在以后的實(shí)驗(yàn)中可以使用更高的SDS濃度來提高對(duì)照的響應(yīng)時(shí)間?偟膩碚f,這項(xiàng)工作是一項(xiàng)概念驗(yàn)證實(shí)驗(yàn),證明了IMOLA-IVD用于復(fù)雜3D組織模型的能力,作為非侵入式自動(dòng)化細(xì)胞分析的工具。值得注意的是,這項(xiàng)工作還提出了一個(gè)維持ALI的自動(dòng)TEER測(cè)量的方法。
Acknowledgments: F.A.A. would like to thank the Whitaker International Program for their financial support of
this work. The authors would also like to thank the Deutscher Tierschutzbund–Akademie für Tierschutz (German
Animal Welfare Federation–Animal Welfare Academy) and MatTek in vitro life science laboratories, Slovakia,
for EpiDerm RhE models.
Author Contributions: F.A.A. and J.W. developed the concept; F.A.A. and S.E. conceived and designed the
experiments; F.A.A. performed the experiments; F.A.A. and J.W. analyzed the data; F.A.A., S.E. and J.W. wrote
the paper.
Conflicts of Interest: J.W. is chief executive officer (CEO) and shareholder of cellasys GmbH.The datasets generated for this study are available on request to the corresponding author.
北京佰司特貿(mào)易有限責(zé)任公司 (https://www.best-sciences.com):
質(zhì)量光度計(jì)-OneMP;類器官培養(yǎng)儀-HUMIMIC;灌流式細(xì)胞組織類器官代謝分析儀-IMOLA;便攜式4通道SPR儀-P4SPR;藍(lán)光/綠光LED凝膠成像;Nanocellect細(xì)胞分選儀-WOLF;微納加工點(diǎn)印儀-NLP2000/DPN5000;