合成聚合物形成所需的納米盤的方法介紹
瀏覽次數(shù):985 發(fā)布日期:2023-5-4
來源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責(zé)任自負(fù)
合成納米盤是小尺寸的盤狀結(jié)構(gòu)體,由細(xì)胞膜磷脂組成,而磷脂則通過合成聚合物環(huán)結(jié)合在一起。
圖 1:合成納米盤描述
納米盤提供了細(xì)胞膜中天然膜蛋白環(huán)境的可遷移、幾乎一致的復(fù)制品。因此,它們規(guī)避了增溶去污劑的問題,使我們能夠在活性狀態(tài)下保持膜蛋白穩(wěn)定或?qū)ζ溥M(jìn)行分離,以便開展進(jìn)一步的科學(xué)研究。 |
有幾種不同的聚合物可用于制造合成納米盤,各有其優(yōu)缺點(diǎn)。
合成聚合物如何形成所需的納米盤?
細(xì)胞膜為最重要的蛋白質(zhì)組之一提供了其所需的環(huán)境:膜蛋白質(zhì)組。膜蛋白分為外周蛋白和整合蛋白兩種,二者均具有一定的疏水性,在正常條件下不易溶解。
問題是,當(dāng)這些疏水區(qū)與水或其他親水性介質(zhì)接觸時(shí),膜蛋白的 3D 結(jié)構(gòu)將坍塌,從而失去其功能性。
為避免這種情況發(fā)生,蛋白質(zhì)研究科學(xué)家通常使用去污劑(洗滌劑)來覆蓋膜蛋白的這些脆弱部分。但由于使用去污劑的方法也有其自身的一系列問題,如篩選過程耗時(shí)長或3D 結(jié)構(gòu)的干擾等情況。
相比之下,合成聚合物能夠從其單體中形成聚合物鏈,插入所需的目標(biāo)膜蛋白周圍的細(xì)胞膜之中(見圖2,頂部紅線)。像餅干模具(cookie cutter)一樣,將膜蛋白從膜中溶解出來,而聚合物則使膜蛋白在新形成的納米盤中保持穩(wěn)定。
接下來采用親和層析法精確分離穩(wěn)定的目標(biāo)蛋白,并實(shí)施進(jìn)一步的科學(xué)分析。
圖2:在包含膜蛋白的天然細(xì)胞膜中制備合成納米盤的過程。下一個(gè)步驟一般為親和層析。
已發(fā)表文獻(xiàn):
1. Voskoboynikova et al.Evaluation of DIBMA nanoparticles of variable size and anionic lipid content as tools for the structural and functional study of membrane proteins.University of Osnabrück, GER.
2. Voskoboynikova et al.Lipid Dynamics in Diisobutylene-Maleic Acid (DIBMA) Lipid Particles in Presence of Sensory Rhodopsin II.University of Osnabrück, GER.
3. Zhou et al.Conformations of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoproteins 2 in Detergents and Styrene-Maleic Acid Lipid Particles (SMALPs).Dana-Farber Cancer Institute, USA.
4. Hernandez & Levental.Lipid packing is disrupted in copolymeric nanodiscs compared to intact membranes.University of Virginia, USA.
5. Zhou et al.Conformations of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoproteins 2 in Detergents and Styrene-Maleic Acid Lipid Particles (SMALPs). Dana-Farber Cancer Institute, USA.
6. Brown et al.Structural biology of endogenous membrane protein assemblies in native nanodiscs.Virginia Tech, USA.
7. Zhou et al.Conformations of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoproteins 2 in Detergents and Styrene-Maleic Acid Lipid Particles (SMALPs).Dana-Farber Cancer Institute, USA.
8. Brown et al.Structural biology of endogenous membrane protein assemblies in native nanodiscs.Virginia Tech, USA.
9. Overduin et al.Structures and Dynamics of Native-State Transmembrane Protein Targets and Bound Lipids.University of Alberta, USA.
10. Zhou et al.Conformations of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoproteins 2 in Detergents and Styrene-Maleic Acid Lipid Particles (SMALPs).Dana-Farber Cancer Institute, USA.
11. Overduin et al.Structures and Dynamics of Native-State Transmembrane Protein Targets and Bound Lipids.University of Alberta, USA.
12. Zhou et al.Conformations of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoproteins 2 in Detergents and Styrene-Maleic Acid Lipid Particles (SMALPs).Dana-Farber Cancer Institute, USA.
13. Marconnet et al.Influence of Hydrophobic Groups Attached to Amphipathic Polymers on the Solubilization of Membrane Proteins along with Their Lipids.University of Paris, FR.
14. Noh et al.Cellular Nanodiscs Made from Bacterial Outer Membrane as a Platform for Antibacterial Vaccination.University of California San Diego, USA.
15. Zhou et al.Conformations of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoproteins 2 in Detergents and Styrene-Maleic Acid Lipid Particles (SMALPs).Dana-Farber Cancer Institute, USA.
16. Zhou et al.Conformations of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoproteins 2 in Detergents and Styrene-Maleic Acid Lipid Particles (SMALPs).Dana-Farber Cancer Institute, USA.
17. Hernandez & Levental.Lipid packing is disrupted in copolymeric nanodiscs compared to intact membranes.University of Virginia, USA.
18. Zhou et al.Conformations of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoproteins 2 in Detergents and Styrene-Maleic Acid Lipid Particles (SMALPs).Dana-Farber Cancer Institute, USA.
19. Zhou et al.Conformations of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoproteins 2 in Detergents and Styrene-Maleic Acid Lipid Particles (SMALPs). Dana-Farber Cancer Institute, USA.