你一定聽(tīng)說(shuō)過(guò)Cre-lox重組系統(tǒng),無(wú)論你是否直接進(jìn)行過(guò)基因操作。由于Cre-lox系統(tǒng)具有操作簡(jiǎn)單、重組率高的優(yōu)點(diǎn),如今已經(jīng)成為體內(nèi)外遺傳操作的強(qiáng)有力工具。利用Cre-lox系統(tǒng),可以在特定細(xì)胞、組織或整個(gè)生物體,甚至在特定時(shí)間點(diǎn)敲除或表達(dá)某個(gè)基因,實(shí)現(xiàn)對(duì)特定基因的時(shí)空特異性操作,這對(duì)基因功能的研究和人類疾病動(dòng)物模型的建立都具有深刻影響。
傳統(tǒng)的Cre-lox系統(tǒng)雖然可以特異性的標(biāo)記目的細(xì)胞的靶基因。同時(shí)后續(xù)也可以通過(guò)CreERT2的方式,實(shí)現(xiàn)時(shí)間上對(duì)Cre的控制。但是在使用過(guò)程中還是常常遇到各種問(wèn)題:?jiǎn)位蚴欠衲芴禺愋缘臉?biāo)記某類細(xì)胞?他莫昔芬誘導(dǎo)要不要考慮代謝問(wèn)題,毒性問(wèn)題呢?萬(wàn)一這類細(xì)胞找不到合適的靶基因又該怎么呢?今天小編為您細(xì)說(shuō)Cre-lox系統(tǒng)的老套路和新玩法。
老套路
環(huán)化重組酶(Cre, cyclization recombinase),是酪氨酸位點(diǎn)特異性重組酶之一,能催化兩個(gè)DNA識(shí)別位點(diǎn)之間的位點(diǎn)特異性重組。Cre重組酶來(lái)源于P1噬菌體,由 343個(gè)氨基酸組成,能特異性地識(shí)別Lox位點(diǎn)。
Cre重組酶識(shí)別的回文DNA位點(diǎn),也叫l(wèi)oxP (locus of X-over P1) 位點(diǎn),長(zhǎng)34bp,其特征結(jié)構(gòu)為ATAACTTCGTATA-NNNTANNN-TATACGAAGTTAT,兩邊反向互補(bǔ)的13個(gè)堿基為Cre重組酶的識(shí)別序列。
合理利用Cre-Lox系統(tǒng)可以實(shí)現(xiàn)對(duì)基因的操控,根據(jù)您的需求進(jìn)行基因的條件性表達(dá)或和條件性敲除。關(guān)于Cre-lox系統(tǒng)的原理與基本應(yīng)用,我們官網(wǎng)上有詳細(xì)介紹哦,點(diǎn)擊此處鏈接可閱讀,感興趣的點(diǎn)擊下方了解吧。
新玩法
基于小鼠的Cre-lox系統(tǒng)應(yīng)用
早在2003年 Jean-Paul Herman團(tuán)隊(duì)就提出Cre酶由于缺乏對(duì)其活動(dòng)的有效時(shí)間控制,它的實(shí)用性仍然受到限制,后來(lái)他們開(kāi)發(fā)了 DiCre,一種用于 Cre 的可調(diào)節(jié)片段互補(bǔ)系統(tǒng)。Cre酶被分成兩個(gè)部分,分別與 FKBP12(FK506 結(jié)合蛋白12)和 FRB(FKBP12-雷帕霉素相關(guān)蛋白的結(jié)合域)融合,再通過(guò)雷帕霉素的誘導(dǎo)快速重組,利用雷帕霉素與FKBP12和FRB結(jié)構(gòu)域結(jié)合后,可以直接誘導(dǎo)這兩個(gè)結(jié)合結(jié)構(gòu)域的異二聚化的原理,實(shí)現(xiàn)Cre酶的時(shí)間調(diào)控(Nicolas Jullien et al., Nucleic Acids Res. 2003)。
Principles of the DiCre system. (A) Scheme of the DiCre system. The enzyme is split into two fragments without enzymatic activity, that are fused to proteins (here FKBP12 and FRB) that can be dimerized by a small molecule ligand. Dimerization leads to the association of the complementing Cre moieties and the reconstitution of enzymatic activity. (C) Schematic representation of the constructs used for DiCre. The translation initiation codon has been placed into the context of Kozak’s consensus sequence. NLS corresponds to a nuclear localization signal peptide. The unique NheI (N) and BamHI (B) sites flanking the linker sequence allow its simple replacement with variants.
2009年Frank Kirchhoff團(tuán)隊(duì)針對(duì)Cre/loxP系統(tǒng)單基因的表達(dá)模式存在不特異性的問(wèn)題,且單啟動(dòng)子不足以從遺傳學(xué)上定義不同的神經(jīng)細(xì)胞類型,他們?cè)谏鲜鲅芯炕A(chǔ)上改進(jìn)了DiCre,并重新定義為“split-Cre”系統(tǒng)。具有 N 端或 C 端 Cre 片段的分別融合到酵母轉(zhuǎn)錄激活因子 GCN4 的組成型二聚化卷曲螺旋亮氨酸拉鏈域中(兩個(gè)拉鏈區(qū)可以由α螺旋一側(cè)的Leu之間的疏水作用形成拉鏈,并以α螺旋超卷曲的連接方式形成二聚體),分別定義為NCre 和 CCre,通過(guò)GCN4的二聚化實(shí)現(xiàn)Cre的重組。在此結(jié)構(gòu)的基礎(chǔ)上連接上不同基因的啟動(dòng)子,實(shí)現(xiàn)在發(fā)育過(guò)程中 NCre 和 CCre 的短暫但同時(shí)表達(dá)的細(xì)胞才具有Cre活性(Johannes Hirrlinger et al., PLoS One. 2009)。
A: Principle of split-Cre complementation. NCre- and CCre-coding sequences are placed under the control of two different promoters (promoter 1 and 2, respectively). Only if both promoters are active, functional complementation takes place and LoxP (red triangles) – flanked sequences are recombined, thereby activating reporter genes (A1) or excising exons for knock-out strategies (A2). Ubi: ubiquitously expressed promoter (in our study the ROSA26 promoter). B: Design of fusion proteins. NCre- and CCre-proteins were constructed by fusing amino acids 19–59 (NCre) or amino acids 60–343 (CCre) of the sequence of Cre recombinase to the constitutive active coiled-coil interaction domain of the yeast transcription factor GCN4 (GCN4cc). Immunotags (Flag, Myc), a linker sequence as well as a nuclear localization sequence (NLS) were also added.
兩個(gè)研發(fā)團(tuán)隊(duì)通過(guò)不同的方式都實(shí)現(xiàn)了對(duì)Cre活性的調(diào)控,“split-Cre”系統(tǒng)可以說(shuō)是在DiCre基礎(chǔ)上做了完善,實(shí)現(xiàn)了Cre作用的更精準(zhǔn)更特異,但是卻舍棄了DiCre實(shí)現(xiàn)對(duì)Cre時(shí)間上的調(diào)控的設(shè)計(jì)初衷,隨著技術(shù)的發(fā)展CreERT2進(jìn)入了人們的視野,但是化學(xué)誘導(dǎo)不可避免存在一定的毒性,這個(gè)問(wèn)題對(duì)一些藥物敏感性實(shí)驗(yàn)成為了致命打擊。
2020年Haifeng Ye團(tuán)隊(duì)針對(duì)化學(xué)誘導(dǎo)毒性問(wèn)題,并結(jié)合前人研究,提出了新的系統(tǒng)遠(yuǎn)紅光誘導(dǎo)分裂Cre-loxP系統(tǒng)-FISC系統(tǒng)。該系統(tǒng)將Cre的N端融合到Coh2結(jié)構(gòu)域,Cre的C端與DocS結(jié)構(gòu)域融合,并由遠(yuǎn)紅外光(FRL)響應(yīng)啟動(dòng)子pFRLx驅(qū)動(dòng),在FRL光照下,基于Coh2和DocS結(jié)構(gòu)域的強(qiáng)親和力,當(dāng)將兩個(gè)片段結(jié)合在一起時(shí),Cre酶才能擁有重組酶活性,行使相應(yīng)功能(Jiali Wu et al., Nat Commun. 2020)。
Design and optimization of the far-red light-induced split Cre-loxP system (FISC system). Schematic representation of the FISC system. Cre recombinase was split into two fragments: CreN59 (residues 1–59) fused to Coh2 driven by a constitutive promoter (PhCMV) and CreC60 (residues 60–343) fused to DocS driven by the far-red light (FRL, 730 nm)-inducible promoter (PFRLx). Upon FRL illumination, the photoreceptor BphS is activated toconvert intracellular guanylate triphosphate (GTP) into cyclic diguanylate monophosphate (c-di-GMP). The cytosolic c-di-GMP production induces bindingof the far-red light-dependent transactivator FRTA (p65-VP64-BldD) to its synthetic promoter PFRLx to drive DocS-CreC60 expression. Consequently, the catalytic activities of Cre recombinase can be restored once the two Cre fragments assemble based on affifinity interactions of their respective Coh2 and DocS fusion domains, enabling to excise DNA sequences flflanked by loxP sites
以上研究都是基于小鼠為研究模型對(duì)Cre-loxP系統(tǒng)的不同應(yīng)用,南模生物可提供超過(guò)300多種自主產(chǎn)權(quán)Cre工具鼠,覆蓋全身各類型的細(xì)胞組織,滿足科研人員多樣化的需求。同時(shí),南模生物長(zhǎng)期提供Cre工具鼠定制服務(wù),可按具體實(shí)驗(yàn)要求進(jìn)行定制,滿足不同實(shí)驗(yàn)室需求。
基于AAV的Cre-lox系統(tǒng)應(yīng)用
固然,根據(jù)具體實(shí)驗(yàn)方案定制培育Cre小鼠是更貼合實(shí)驗(yàn)需求的方式,但定制Cre小鼠不僅費(fèi)時(shí)而且昂貴,且管理多種Cre小鼠品系更是繁瑣易錯(cuò),那么這一問(wèn)題又該怎么解決呢?
重組腺相關(guān)病毒載體(AAV)介導(dǎo)的Cre-loxP系統(tǒng)很好的解決了上述問(wèn)題,將目的元件包括啟動(dòng)子和增強(qiáng)子,以及內(nèi)含子、微小 RNA 識(shí)別序列和內(nèi)部核糖體進(jìn)入位點(diǎn)(IRES或2A),重組酶(Cre、CreER、Flp 或 FlpER),翻譯后調(diào)控元件,如 WPRE 或 3'-UTR等,構(gòu)建出特異性組織或者細(xì)胞表達(dá)的Cre工具鼠(Leila Haery et al., Front Neuroanat. 2019)。
Several aspects of experimental design affect neuronal targeting and manipulation including (A) viral delivery method, (B) composition of viral capsid proteins, (C) promoters and/or enhancers driving transgene expression, (D) IRES or 2A elements for multicistronic expression coupled with fluorescent proteins (FP) or protein epitopes, (E) post-translational regulatory elements such as WPRE or 3′-UTR, and (F) Recombinase (Cre, CreER, Flp, or FlpER) expression from transgenic driver lines (inserted genomically via targeted or random integration) and ligand-dependent or recombinase-dependent expression elements such as TRE or lox sites, respectively. Abbreviations: TRE, tetracycline-response element; lox, LoxP sequence; IRES, internal ribosomal entry site; 2A, 2A sequence for self-cleavage; FP, fluorescent protein; WPRE, woodchuck hepatitis virus posttranscriptional regulatory element; 3′-UTR, 3′-untranslated sequence.
但是AAV轉(zhuǎn)導(dǎo)的效率和特異性也會(huì)受到很多因素的影響,比如說(shuō):給藥的途徑、AAV血清型、AAV滴度和給藥劑量等,同時(shí)哺乳動(dòng)物的基因轉(zhuǎn)錄的調(diào)控元件通常分布在數(shù)千到數(shù)十萬(wàn)個(gè)堿基上,但是AAV 基因組的包裝能力是有限的(小于5kb),所以識(shí)別與 AAV 兼容的啟動(dòng)子一直具有挑戰(zhàn)性。這些也都使AAV介導(dǎo)Cre-loxP系統(tǒng)受到了一定的限制,所以到底是用老鼠或是AAV還是要視情況而定的。
南模生物利用AAV介導(dǎo)的Cre-flox系統(tǒng)構(gòu)建了豐富的動(dòng)物模型,部分驗(yàn)證數(shù)據(jù)如下:
小鼠肺癌模型
由氣管霧化注射AAV-Cre病毒至KL小鼠(NM-CKO-234719)肺部,使Cre在小鼠肺部特異性表達(dá),誘導(dǎo)Stk11表達(dá)缺失與Kras-G12D突變,可誘發(fā)肺癌發(fā)生。
小鼠PKD運(yùn)動(dòng)障礙模型
腺相關(guān)病毒介導(dǎo) Cre 在小腦內(nèi)局部敲除 Prrt2 表達(dá),導(dǎo)致熱誘導(dǎo)性運(yùn)動(dòng)障礙的發(fā)作。
南模生物Find Cre®數(shù)據(jù)庫(kù)
南模生物深耕基因修飾動(dòng)物模型行業(yè)二十余年,為快速精準(zhǔn)地選擇合適Cre工具鼠,特推出Find Cre®數(shù)據(jù)庫(kù)。該數(shù)據(jù)庫(kù)包含超過(guò)300多種自主產(chǎn)權(quán)Cre重組酶工具鼠,以小鼠組織、器官和系統(tǒng)為主線,可分為肺、肝、胃腸道、乳腺、胰腺、感覺(jué)器官、心血管系統(tǒng)、免疫系統(tǒng)、神經(jīng)系統(tǒng)、泌尿生殖系統(tǒng)、骨骼肌系統(tǒng)以及其他組織器官。大家只要選擇自己感興趣的組織器官,就可以查看該組織下可用的Cre工具鼠。
參考文獻(xiàn):
Nicolas Jullien et al. Regulation of Cre recombinase by ligand-induced complementation of inactive fragments. Nucleic Acids Res. 2003 Nov 1;31(21):e131. doi: 10.1093/nar/gng131.
Johannes Hirrlinger et al. Split-cre complementation indicates coincident activity of different genes in vivo. PLoS One. 2009;4(1):e4286. doi: 10.1371/journal.pone.0004286. Epub 2009 Jan 27.
Jiali Wu et al. A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice. Nat Commun. 2020 Jul 24;11(1):3708.doi: 10.1038/s41467-020-17530-9.
Leila Haery et al. Adeno-Associated Virus Technologies and Methods for Targeted Neuronal Manipulation. Front Neuroanat. 2019 Nov 26:13:93.doi: 10.3389/fnana.2019.00093. eCollection 2019.
Tan GH, Liu YY, Wang L, et al. PRRT2 deficiency induces paroxysmal kinesigenic dyskinesia by regulating synaptic transmission in cerebellum. Cell Res. 2018;28(1):90-110. doi:10.1038/cr.2017.128