综合图区亚洲网友自拍|亚洲黄色网络|成人无码网WWW在线观看,日本高清视频色视频kk266,激情综合五月天,欧美一区日韩一区中文字幕页

                                English | 中文版 | 手機版 企業(yè)登錄 | 個人登錄 | 郵件訂閱
                                當前位置 > 首頁 > 技術文章 > 超精準可調(diào)節(jié)溫度控制模塊VAHEAT在期刊發(fā)表文獻匯總

                                超精準可調(diào)節(jié)溫度控制模塊VAHEAT在期刊發(fā)表文獻匯總

                                瀏覽次數(shù):1242 發(fā)布日期:2024-3-4  來源:本站 僅供參考,謝絕轉載,否則責任自負
                                       德國INTERHERENCE公司開發(fā)的超精準可調(diào)節(jié)溫度控制模塊VAHEAT是一款用于光學顯微鏡的精密溫度控制模塊,技術來源于德國著名的馬克斯-普朗克研究所(MPI),兼容市面上絕大多數(shù)的商用顯微鏡和物鏡,可在高清成像的同時快速和精確地調(diào)節(jié)溫度,加熱速率可達100℃/s,最高溫度可達200℃,穩(wěn)定性0.01℃,是材料研究領域必備工具。該模塊自2021年問世以來,已在《Journal of the American Chemical Society 》、《Small 》、《EMBO Journal 》、《Nature Communications 》、《Nature Methods 》、《Nature Nanotechnology 》等高水平期刊發(fā)表數(shù)篇文獻。
                                 
                                圖1 VAHEAT實物圖
                                 
                                圖2 A: VAHEAT各部件名稱
                                B: VAHEAT配有容納液體樣品的智能基板,可安裝在顯微鏡上
                                C: VEAHEAT智能基板含有氧化銦錫(ITO)加熱元件和溫度探頭
                                 
                                VAHEAT主要特點:
                                ☛ 溫度穩(wěn)定性高:0.01℃
                                ☛ 溫控范圍廣:RT-200℃
                                ☛ 優(yōu)越的成像質量
                                ☛ 快速且可靠,用于油浸物鏡
                                ☛ 四種加熱模式可根據(jù)用戶需求進行不同的實驗
                                ☛ 機械穩(wěn)定性和設備兼容性
                                ☛ 便于攜帶和安裝
                                 
                                VAHEAT兼容多種成像技術:
                                ☛ 全內(nèi)反射顯微鏡 Total internal reflection microscopy (TIRM)
                                ☛ 原子力顯微鏡 Atomic force microscopy (AFM)
                                ☛ 共聚焦顯微鏡 Confocal microscopy
                                ☛ 超分辨顯微鏡 Super resolution methods (SIM, STORM, PALM, PAINT, STED)
                                ☛ 干涉散射顯微鏡 Interferometric scattering microscopy (iSCAT)
                                ☛ 寬場顯微鏡 Widefield microscopy
                                 
                                VAHEAT典型案例:
                                 
                                ■ 2D材料的光致發(fā)光動態(tài)相變
                                 
                                 
                                       猶他大學的Connor Bischak實驗室使用超精準可調(diào)節(jié)溫度控制模塊VAHEAT獲得了從40°C升高到110°C再降低到40°C,速度為0.2°C/s的光致發(fā)光(PL)數(shù)據(jù)。
                                 

                                 
                                參考文獻:Rand L. Kingsford …& Connor G. Bischakd. (2023) Controlling Phase Transitions in Two-Dimensional Perovskites through Organic Cation Alloying. Journal of the American Chemical Society, 145, 11773−11780.
                                 
                                ■ 納米顆粒的iSCAT成像
                                 
                                 
                                       馬克斯普朗克光科學研究所的Vahid Sandoghdar實驗室致力于研究干涉散射(iSCAT)顯微技術,他們使用超精準可調(diào)節(jié)溫度控制模塊VAHEAT調(diào)整30 nm的金納米顆粒的溫度并檢測擴散系數(shù),所得測量結果與使用金納米顆粒的流體力學直徑(實線)計算出的擴散系數(shù)基本一致。
                                 
                                 
                                參考文獻:Anna D. Kashkanova …& Vahid Sandoghdar. (2022) Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nature Methods, 19, 586–593.
                                 
                                ■ AlGaN溫感發(fā)光研究
                                 
                                 
                                       華東師范大學武鄂教授使用超精準可調(diào)節(jié)溫度控制模塊VAHEAT對單光子發(fā)射源(SPE)在AlGaN微柱中的溫度依賴性進行了研究。文章針對SPE在不同溫度下的PL光譜、PL強度、輻射壽命等參數(shù),探究了AlGaN SPE在高溫下線寬加寬的可能機制,有助于深入研究如何實現(xiàn)此材料在高溫下工作的芯片集成應用。
                                 
                                 
                                參考文獻:Yingxian Xue …& E Wu. Temperature-dependent photoluminescence properties of single defects in AlGaN micropillars. Nanotechnology, 34, 225201.
                                 
                                ■ 高溫條件下黑金薄膜的拉曼光譜
                                 

                                 
                                       德國柏林亥姆霍茲中心(HZB)的Yan Lu教授和波茨坦大學的Sergio Kogikoski教授使用超精準可調(diào)節(jié)溫度控制模塊VAHEAT測量了從室溫到122°C不同溫度下黑金薄膜的拉曼光譜。本實驗用低強度激光入射(100 μW)測量拉曼光譜,以通過溫度而不是光照射來誘導反應。
                                 
                                 
                                參考文獻:Radwan M. Sarhan …& Yan Lu. (2023) Colloidal Black Gold with Broadband Absorption for Plasmon-Induced Dimerization of 4-Nitrothiophenol and Cross-Linking of Thiolated Diazonium Compound. Journal of Physical Chemistry C, https://doi.org/10.1021/acs.jpcc.3c00067.
                                 
                                VAHEAT部分客戶:
                                 
                                 
                                VAHEAT部分發(fā)表文獻:
                                 
                                1. Rand L. Kingsford …& Connor G. Bischakd. (2023) Controlling Phase Transitions in Two-Dimensional Perovskites through Organic Cation Alloying. Journal of the American Chemical Society, 145, 11773−11780.
                                2. Fan Hong …& Peng Yin. (2023) Thermal-plex: fluidic-free, rapid sequential multiplexed imaging with DNA-encoded thermal channels. Nature Methods, Mai P. Tran …& Kerstin Göpfrich. (2023) A DNA Segregation Module for Synthetic Cells. Small, 19, 2202711.
                                3. Anna D. Kashkanova …& Vahid Sandoghdar. (2022) Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nature Methods, 19, 586–593.
                                4. Pierre Stömmer …& Hendrik Dietz. (2021) A synthetic tubular molecular transport system. NATURE COMMUNICATIONS, 12, 4393.
                                5. Bas W. A. Bögels …& Tom F. A. de Greef. (2023) DNA storage in thermoresponsive microcapsules for repeated random multiplexed data access. Nature Nanotechnology, 18, 912–921.
                                6. Tugce Oz …& Wolfgang Zachariae. (2022) The Spo13/Meikin pathway confines the onset of gamete differentiation to meiosis II in yeast. EMBO Journal, https://doi.org/10.15252/embj.2021109446.
                                7. Valentina Mengoli …& Wolfgang Zachariae. (2021) Deprotection of centromeric cohesin at meiosis II requires APC/C activity but not kinetochore tension. EMBO Journal, https://doi.org/10.15252/embj.2020106812.
                                8. Mariska Brüls …& Ilja K. Voets. (2023) Investigating the impact of exopolysaccharides on yogurt network mechanics and syneresis through quantitative microstructural analysis. Food Hydrocolloids, https://doi.org/10.1016/j.foodhyd.2023.109629.
                                9. Yingxian Xue …& E Wu. Temperature-dependent photoluminescence properties of single defects in AlGaN micropillars. Nanotechnology, 34, 225201.
                                10. https://doi.org/10.1038/s41592-023-02115-3.
                                11. Radwan M. Sarhan …& Yan Lu. (2023) Colloidal Black Gold with Broadband Absorption for Plasmon-Induced Dimerization of 4-Nitrothiophenol and Cross-Linking of Thiolated Diazonium Compound. Journal of Physical Chemistry C, https://doi.org/10.1021/acs.jpcc.3c00067.
                                12. Maëlle Bénéfice …& Guillaume Baffou. (2023) Dry mass photometry of single bacteria using quantitative wavefront microscopy. Biophysical Journal, https://doi.org/10.1016/j.bpj.2023.06.020
                                13. Jaroslav Icha, Daniel Böning, and Pierre Türschmann. (2022) Precise and Dynamic Temperature Control in High-Resolution Microscopy with VAHEAT. Microscopy Today, 30(1), 34–41.
                                14. L. Birchall …& C.J. Tuck. (2022) An inkjet-printable fluorescent thermal sensor based on CdSe/ZnS quantum dots immobilised in a silicone matrix. Sensors and Actuators: A. Physical, 347, 113977.
                                15. Rajyalakshmi Meduri …& David S. Gross. (2022) Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density. JOURNAL OF BIOLOGICAL CHEMISTRY, 298(10), 102365.
                                16. Marleen van Wolferen …& Sonja-Verena Albers. (2022) Progress and Challenges in Archaeal Cell Biology. Archaea. Methods in Molecular Biology, 2522, 365–371.
                                17. Wei Liu …& Andreas Walther. (2022) Mechanistic Insights into the Phase Separation Behavior and Pathway-Directed Information Exchange in all-DNA Droplets. Angewandte Chemie, 134, e202208951.
                                18. Céline Molinaro …& Guillaume Baffou. (2021) Are bacteria claustrophobic? The problem of micrometric spatial confinement for the culturing of micro-organisms. RSC Advances, 11, 12500–12506.
                                19. SadmanShakib …& GuillaumeBaffou. (2021) Microscale Thermophoresis in Liquids Induced by Plasmonic Heating and Characterized by Phase and Fluorescence Microscopies. Journal of Physical Chemistry C, 125, 21533−21542.
                                 
                                       為了更好的為國內(nèi)科研工作者提供專業(yè)技術支持和服務,Quantum Design中國北京樣機實驗室引進了VAHEAT超精準可調(diào)節(jié)溫度控制模塊,為您提供樣品測試、樣機體驗等機會,歡迎各位老師垂詢!
                                 
                                 
                                來源:Quantum量子科學儀器貿(mào)易(北京)有限公司
                                聯(lián)系電話:010-85120280(聯(lián)系我時,請說明是在生物器材網(wǎng)了解)
                                E-mail:info@qd-china.com

                                用戶名: 密碼: 匿名 快速注冊 忘記密碼
                                評論只代表網(wǎng)友觀點,不代表本站觀點。 請輸入驗證碼: 8795
                                Copyright(C) 1998-2024 生物器材網(wǎng) 電話:021-64166852;13621656896 E-mail:info@bio-equip.com