综合图区亚洲网友自拍|亚洲黄色网络|成人无码网WWW在线观看,日本高清视频色视频kk266,激情综合五月天,欧美一区日韩一区中文字幕页

English | 中文版 | 手機(jī)版 企業(yè)登錄 | 個(gè)人登錄 | 郵件訂閱
當(dāng)前位置 > 首頁(yè) > 技術(shù)文章 > 單個(gè)細(xì)胞級(jí)別的粘附力測(cè)定

單個(gè)細(xì)胞級(jí)別的粘附力測(cè)定

瀏覽次數(shù):7959 發(fā)布日期:2019-5-16  來(lái)源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責(zé)任自負(fù)
 
 
 
 
單個(gè)細(xì)胞級(jí)別的粘附力測(cè)定
 
      單細(xì)粘附力的測(cè)定一直以來(lái)都缺乏一種能夠在不改變細(xì)胞性質(zhì)的同時(shí)測(cè)量細(xì)胞整體粘附力的設(shè)備。現(xiàn)如今FluidFM 技術(shù)的出現(xiàn)改變了這一狀況。高精密的流體力探針能夠在精準(zhǔn)感知壓力的同時(shí)通過(guò)內(nèi)壓而非蛋白結(jié)合的方式在不改變細(xì)胞性質(zhì)的同時(shí)牢固的抓取細(xì)胞,為單細(xì)胞粘附力測(cè)定提供新的可能。
 
      當(dāng)今,機(jī)械生物學(xué)是一個(gè)新興、迅速發(fā)展的研究領(lǐng)域,并著重研究細(xì)胞力學(xué)在細(xì)胞功能乃至整個(gè)生物體水平上的作用,從而揭示細(xì)胞受力對(duì)組織、器官發(fā)育、生理學(xué)以及疾病的起因和進(jìn)展中所發(fā)揮的作用。其中在細(xì)胞層面上的研究主要集中在研究細(xì)胞之間的粘附力和細(xì)胞與基質(zhì)之間的相互作用。其中細(xì)胞與基質(zhì)的作用往往需要通過(guò)細(xì)胞表面的整合素受體介導(dǎo)來(lái)完成,也是當(dāng)今的研究重點(diǎn)。目前在細(xì)胞-基質(zhì)相互作用力的研究中已經(jīng)有諸多方法被建立,其中有諸多測(cè)量方法是基于AFM(原子力顯微鏡)的,因?yàn)锳FM 能夠精準(zhǔn)定量測(cè)量細(xì)胞-基質(zhì)之間的粘附力,這也使得AFM 成為了測(cè)量細(xì)胞間作用力的常用設(shè)備。
      該類(lèi)方法主要是利用基質(zhì)蛋白包被探針并與細(xì)胞靠近發(fā)生作用并固定在懸臂上,之后通過(guò)將細(xì)胞與基質(zhì)進(jìn)行接觸從而通過(guò)測(cè)量作用過(guò)程中懸臂的彎曲程度來(lái)實(shí)現(xiàn)力學(xué)測(cè)量。然而這種方法也有其局限性。首先為了讓細(xì)胞能夠與懸臂進(jìn)行粘連,就必須使用凝集素、鏈霉親和素或細(xì)胞外基質(zhì)蛋白進(jìn)行預(yù)處理。然而這將無(wú)可避免的改變細(xì)胞表面細(xì)胞的功能狀態(tài)和表面整合素分布。另外這種方法僅能讓細(xì)胞與基質(zhì)接觸極短的時(shí)間,這導(dǎo)致了這種方法只能應(yīng)用于早期粘附力的測(cè)量。此外受制于材料學(xué)的限制,適合于固定細(xì)胞在探針上并不影響細(xì)胞的強(qiáng)力材料仍有待開(kāi)發(fā)。因此使用AFM 測(cè)量細(xì)胞粘附力的方法仍然需要改進(jìn)與完善。
      而如今Cytosurge 推出的全新的FluidFM 技術(shù)給粘附力測(cè)量帶來(lái)了新的希望。這種技術(shù)結(jié)合了的原子力顯微鏡探測(cè)技術(shù)與微流體控制系統(tǒng)。該技術(shù)能夠直接通過(guò)使用中空的原子力探針將細(xì)胞通過(guò)負(fù)壓粘附在探針表面,并不需要激活細(xì)胞的任何通路信號(hào)。這樣為粘附力的測(cè)量帶來(lái)了極大的優(yōu)勢(shì)。一方面,這種方法能夠提供遠(yuǎn)比蛋白結(jié)合牢固多的粘附力,能夠?qū)⒓?xì)胞牢固的固定在探針上面,因此能夠用于直接從基質(zhì)上分離。而另一方面,由于沒(méi)有生物處理,這種方法不會(huì)改變?nèi)魏渭?xì)胞表面的通路,從而能夠得到最接近細(xì)胞原生的數(shù)據(jù)。本文就如何使用FluidFM 測(cè)定細(xì)胞粘附力和近期應(yīng)用案例進(jìn)行總結(jié)。
 
FluidFM 技術(shù)如何測(cè)定細(xì)胞粘附力?
      為了闡述這個(gè)問(wèn)題,本文引用Scientific Reports 在2017 年發(fā)表的文獻(xiàn)中的方法進(jìn)行闡述。眾所周知,細(xì)胞在基質(zhì)上進(jìn)行單層培養(yǎng)時(shí),吸附在基質(zhì)表面時(shí)主要會(huì)產(chǎn)生兩種不同類(lèi)型的力,一種是細(xì)胞與基質(zhì)之間的粘附力,另一種是細(xì)胞與細(xì)胞之間的粘附力。因此對(duì)于細(xì)胞粘附力來(lái)說(shuō),單個(gè)細(xì)胞的粘附力就是細(xì)胞與基質(zhì)之間的作用力。而單層細(xì)胞的細(xì)胞粘附力則是細(xì)胞之間相互作用力和細(xì)胞基質(zhì)與細(xì)胞之間作用力之和。如下圖所示:
       因此只要同時(shí)測(cè)定單個(gè)細(xì)胞粘附力即可得到細(xì)胞與基質(zhì)之間的相互作用力,而細(xì)胞間的相互作用力則可以通過(guò)同時(shí)測(cè)量單層細(xì)胞的細(xì)胞粘附力和單個(gè)細(xì)胞的粘附力做差即可得到,如下公式所示:
Force cell-cell ≌ Force Monolayer – Force Indiv.cell
      以上即為粘附力的計(jì)算方法,為了能夠測(cè)量粘附力Sancho 等使用FluidFM 技術(shù),通過(guò)將探針靠近細(xì)胞直到探針與細(xì)胞接觸,之后開(kāi)始對(duì)探針腔內(nèi)增加負(fù)壓從而牢固的吸住細(xì)胞。當(dāng)細(xì)胞固定后收回探針并記錄這之間的力學(xué)變化,如下圖所示:
 
      從圖中顯示出當(dāng)探針開(kāi)始靠近細(xì)胞后,探針表面開(kāi)始出現(xiàn)壓力變化,如上圖中的藍(lán)色區(qū)域所示。當(dāng)出現(xiàn)這種變化后就停止下降探針并開(kāi)始施加負(fù)壓。這時(shí)候由于腔內(nèi)負(fù)壓,探針和細(xì)胞之間的結(jié)合變得緊密,導(dǎo)致探針被細(xì)胞向下拉動(dòng),從而產(chǎn)生了上邊右圖白色區(qū)域的力學(xué)變化。隨后隨著探針上升,細(xì)胞給以探針的拉力隨之增高,并逐漸達(dá)到臨界,使得細(xì)胞脫離基質(zhì)。這一過(guò)程的最大值即為細(xì)胞粘附力。
      之后作者考察了兩種性質(zhì)截然不同的細(xì)胞的粘附力。一種是L929 無(wú)細(xì)胞間作用的細(xì)胞,另一種是HUAEC 具有細(xì)胞間的相互作用的細(xì)胞,結(jié)果如下圖所示:
      結(jié)果也證實(shí)了粘附力測(cè)定公式。具有細(xì)胞間作用的HUAEC 在單個(gè)細(xì)胞和單層細(xì)胞之間的粘附力存在差異,而無(wú)細(xì)胞間相互作用的L929 細(xì)胞則沒(méi)有差異。因此FluidFM 技術(shù)能夠很好地幫助研究者研究單細(xì)胞粘附力的性質(zhì)。
 
FluidFM 測(cè)定細(xì)胞粘附力的應(yīng)用
      隨著時(shí)間推移,越來(lái)越多的學(xué)者開(kāi)始使用FluidFM 技術(shù)進(jìn)行測(cè)定細(xì)胞粘附力。以下就近五年的具有代表性的應(yīng)用進(jìn)行總結(jié)。
      Cohen 等使用FluidFM 技術(shù)對(duì)MCF7-MCF10A、MCF7-HS5 的細(xì)胞粘附力進(jìn)行了測(cè)定,并與以往的文獻(xiàn)進(jìn)行對(duì)比,發(fā)現(xiàn)其數(shù)據(jù)與Hossein 等測(cè)定的結(jié)果相符。如下圖所示:
 
      使用FluidFM 技術(shù)對(duì)MCF7-MCF10A、MCF7-HS5 細(xì)胞粘附力進(jìn)行測(cè)定 a. 使用FluidFM 測(cè)定細(xì)胞粘附力全過(guò)程;b. MCF7-HS5 的細(xì)胞粘附力測(cè)試結(jié)果;c. MCF7-MCF10A 的細(xì)胞粘附力測(cè)試結(jié)果。
 
      Jaatinen 等通過(guò)使用FluidFM 技術(shù)研究外加電流對(duì)C2C12 小鼠成肌細(xì)胞粘附力的影響中發(fā)現(xiàn)隨著外周電流的增加,細(xì)胞形態(tài)發(fā)生改變,與基質(zhì)接觸面積降低。當(dāng)電流劑量高過(guò)11As/m2后細(xì)胞形態(tài)急劇改變,粘附力等參數(shù)發(fā)生明顯變化,甚至死亡。如下圖所示:
 
      FluidFM 測(cè)定C2C12 細(xì)胞粘附力 a.使用FluidFM 測(cè)定粘附力顯微鏡圖;b.施加12.3As/m2電流和空白對(duì)照組的粘附力譜線;c.粘附力與電流之間的量效關(guān)系圖。
 
      Sankaran 等使用FluidFM 來(lái)研究共價(jià)和非共價(jià)的表面整合素受體對(duì)細(xì)胞粘附力的影響。通過(guò)測(cè)定發(fā)現(xiàn)兩者均可有效增加細(xì)胞的粘附能力,并且效果近似。
      使用FluidFM 技術(shù)測(cè)定共價(jià)鍵與非共價(jià)鍵之間的整合素受體RGD 之間的區(qū)別 a. FluidFM 測(cè)定粘附力的示意圖; b. 細(xì)胞粘附力測(cè)定前后顯微鏡示意圖; c.測(cè)定粘附力時(shí)候的力學(xué)曲線圖;d. 最大粘附力圖。
 
      Sancho 等通過(guò)FluidFM 技術(shù)使用了一種非常有趣的測(cè)量方法來(lái)測(cè)量MSX1 過(guò)表達(dá)對(duì)細(xì)胞骨架的影響,他們首先將10μm 的小膠球固定在探針上,之后使用探針去壓細(xì)胞直到探針壓力達(dá)到2 nN,通過(guò)壓痕曲線來(lái)分析細(xì)胞骨架變化。通過(guò)對(duì)比發(fā)現(xiàn)過(guò)量表達(dá)MSX1 細(xì)胞的硬度顯著比普通細(xì)胞高。如下圖所示:
      使用FluidFM 技術(shù)測(cè)定HUAEC 中MSX1 過(guò)表達(dá)對(duì)細(xì)胞骨架的影響。a. HUAEC 細(xì)胞的免疫熒光染色phalloidin(上)、vimentin(下)(綠色)Hoechst(藍(lán)色);b. HUAEC 細(xì)胞的免疫熒光染色phalloidin(紅色)、vinculin(綠色)TOPRO-3(藍(lán)色);c. 每個(gè)克隆中vinculin 陽(yáng)性面積;d. 使用FluidFM 技術(shù)壓細(xì)胞的示意圖;e. 吸取10μm 珠子;f. 空白細(xì)胞下壓時(shí)的力學(xué)譜線;g. MSX 過(guò)表達(dá)細(xì)胞下壓時(shí)的力學(xué)譜線,更深的凹陷和平滑的斜率表示較低的剛度; h.用膠體壓痕法測(cè)定細(xì)胞剛度的測(cè)量結(jié)果。
 
總結(jié)
      細(xì)胞粘附力測(cè)定在細(xì)胞生命科學(xué)研究中起著至關(guān)重要的作用,然而傳統(tǒng)手段中有著各種各樣的局限性,這主要原因是缺乏一種有效能夠抓取細(xì)胞并進(jìn)行力學(xué)測(cè)定的手段,F(xiàn)如今FluidFM 技術(shù)在細(xì)胞粘附力測(cè)定中的使用,使得研究者們有了一種能夠有效、低損的方式抓取細(xì)胞,并配合著原子力顯微鏡的精確測(cè)量的特性,從而能夠真正意義上的做到精準(zhǔn)、無(wú)損、快速的測(cè)量單細(xì)胞粘附力,幫助研究者尋找細(xì)胞粘附力與細(xì)胞生命發(fā)展、腫瘤細(xì)胞轉(zhuǎn)移之間的關(guān)系。
 
參考文獻(xiàn)
1. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10, 21–33 (2009).
2. Helenius, J., Heisenberg, C. P., Gaub, H. E. & Muller, D. J. Single-cell force spectroscopy. J Cell Sci 121, 1785–1791 (2008).
3. Wojcikiewicz, E. P., Zhang, X., Chen, A. & Moy, V. T. Contributions of molecular binding events and cellular compliance to the modulation of leukocyte adhesion. J Cell Sci 116, 2531–2539 (2003).
4. Friedrichs, J., Helenius, J. & Muller, D. J. Stimulated single-cell force spectroscopy to quantify cell adhesion receptor crosstalk.Proteomics 10, 1455–1462 (2010).
5. Friedrichs, J. et al. A practical guide to quantify cell adhesion using single-cell force spectroscopy. Methods 60, 169–178 (2013).
6. Taubenberger, A. V., Hutmacher, D. W. & Muller, D. J. Single-cell force spectroscopy, an emerging tool to quantify cell adhesion to biomaterials. Tissue Eng Part B Rev 20, 40–55 (2014).
7. Meister, A. et al. FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett 9, 2501–2507 (2009).
8. Potthoff, E. et al. Rapid and serial quantification of adhesion forces of yeast and Mammalian cells. PLoS One 7, e52712 (2012).
9. Potthoff, E. et al. Toward a rational design of surface textures promoting endothelialization. Nano Lett 14, 1069–1079 (2014).
10. Guillaume-Gentil, O. et al. Force-controlled manipulation of single cells: from AFM to FluidFM. Trends Biotechnol 32, 381–388 (2014).
11. Steinberg, M. S. Reconstruction of tissues by dissociated cells. Science 141, 401–408 (1963).
12. Kumar, S. & Weaver, V. M. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev 28, 113–127 (2009). Scientific Reports | 7:46152 | DOI: 10.1038/srep46152
13. Ryan, P. L., Foty, R. A., Kohn, J. & Steinberg, M. S. Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proc Natl Acad Sci USA 98, 4323–4327 (2001).
14. Shinozawa, T., Yoshikawa, H. Y. & Takebe, T. Reverse engineering liver buds through self-driven condensation and organization towards medical application. Dev Biol 420, 221–229 (2016).
15. Eisenberg, L. M. & Markwald, R. R. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77, 1–6 (1995).
16. Zeisberg, E. M., Potenta, S., Xie, L., Zeisberg, M. & Kalluri, R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67, 10123–10128 (2007).
17. Medici, D. et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med 16, 1400–1406 (2010).
18. Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13, 952–961 (2007).
19. Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat Methods 13, 415–423 (2016).
20. Kashef, J. & Franz, C. M. Quantitative methods for analyzing cell-cell adhesion in development. Dev Biol 401, 165–174 (2015).
21. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nat Mater 10, 469–475 (2011).
22. Das, T. et al. A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat Cell Biol 17, 276–287(2015).
23. Kashef, J. & Franz, C. M. Quantitative methods for analyzing cell-cell adhesion in development. Developmental Biology 401, 165–174(2015).
24. Puech, P. H., Poole, K., Knebel, D. & Muller, D. J. A new technical approach to quantify cell-cell adhesion forces by AFM. Ultramicroscopy 106, 637–644 (2006).
25. Winklbauer, R. Cell adhesion strength from cortical tension - an integration of concepts. J Cell Sci 128, 3687–3693 (2015).
26. Huang, R. Y., Guilford, P. & Thiery, J. P. Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci 125, 4417–4422 (2012).
27. Weder, G. et al. The quantification of single cell adhesion on functionalized surfaces for cell sheet engineering. Biomaterials 31, 6436–6443 (2010).
28. Lagendijk, A. K., Yap, A. S. & Hogan, B. M. Endothelial cell-cell adhesion during zebrafish vascular development. Cell Adh Migr 8,136–145 (2014).
29. Weber, G. F., Bjerke, M. A. & DeSimone, D. W. Integrins and cadherins join forces to form adhesive networks. Journal of Cell Science124, 1183–1193 (2011).
30. Owen, G. R., Meredith, D. O., ap Gwynn, I. & Richards, R. G. Focal adhesion quantification - a new assay of material biocompatibility? Review. Eur Cell Mater 9, 85–96, discussion 85–96 (2005).
31. Maddaluno, L. et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498, 492–496 (2013).
32. Vandersmissen, I. et al. Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response. J Cell Biol 210,1239–1256 (2015).
33. Chen, Y. H., Ishii, M., Sucov, H. M. & Maxson, R. E. Jr. Msx1 and Msx2 are required for endothelial-mesenchymal transformation of the atrioventricular cushions and patterning of the atrioventricular myocardium. BMC Dev Biol 8, 75 (2008).
34. Ma, L., Lu, M. F., Schwartz, R. J. & Martin, J. F. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132, 5601–5611 (2005).
35. Zeisberg, M. & Neilson, E. G. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119, 1429–1437 (2009).
36. Meng, F. & Wu, G. The rejuvenated scenario of epithelial-mesenchymal transition (EMT) and cancer metastasis. Cancer Metastasis Rev 31, 455–467 (2012).
37. Chamberlain, G., Fox, J., Ashton, B. & Middleton, J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25, 2739–2749 (2007).
38. Medici, D. & Kalluri, R. Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol 22, 379–384 (2012).
39. Potenta, S., Zeisberg, E. & Kalluri, R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer 99, 1375–1379 (2008).
40. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15, 178–196(2014).
41. Zebda, N., Dubrovskyi, O. & Birukov, K. G. Focal Adhesion Kinase Regulation of Mechanotransduction and its Impact on Endothelial Cell Functions. Microvascular Research 83, 71–81 (2012).
42. Briscoe, B. J., Sebastian, K. S. & Adams, M. J. The Effect of Indenter Geometry on the Elastic Response to Indentation. Journal of Physics D-Applied Physics 27, 1156–1162 (1994).
43. Mahaffy, R. E., Park, S., Gerde, E., Kas, J. & Shih, C. K. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophysical J 86, 1777–1793 (2004).
44. Li, Q. S., Lee, G. Y., Ong, C. N. & Lim, C. T. AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374, 609–613 (2008).
45. Nelson, C. M., Pirone, D. M., Tan, J. L. & Chen, C. S. Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions stimulating RhoA. Molecular Biology of the Cell 15, 2943–2953 (2004).
46. Yilmaz, M. & Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28, 15–33 (2009).
47. Savagner, P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 23, 912–923 (2001).
48. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology 15, 178–196 (2014).
49. Thoelking, G. et al. Nanotopography follows force in TGF-beta1 stimulated epithelium. Nanotechnology 21, 265102 (2010).
50. Buckley, S. T., Medina, C., Davies, A. M. & Ehrhardt, C. Cytoskeletal re-arrangement in TGF-beta1-induced alveolar epithelialmesenchymal transition studied by atomic force microscopy and high-content analysis. Nanomedicine 8, 355–364 (2012).
51. Osborne, L. D. et al. TGF-beta regulates LARG and GEF-H1 during EMT to affect stiffening response to force and cell invasion.Molecular Biology of the Cell 25, 3528–3540 (2014).
52. Gasparics, A., Rosivall, L., Krizbai, I. A. & Sebe, A. When the endothelium scores an own goal: endothelial cells actively augment metastatic extravasation through endothelial-mesenchymal transition. Am J Physiol Heart Circ Physiol 310, H1055–1063 (2016).
53. Sader, J. E., Larson, I., Mulvaney, P. & White, L. R. Method for the Calibration of Atomic-Force Microscope Cantilevers. Review ofScientific Instruments 66, 3789–3798 (1995).
54. Dorig, P. et al. Exchangeable colloidal AFM probes for the quantification of irreversible and long-term interactions. Biophys J 105,463–472 (2013).
55. Radmacher, M., Fritz, M. & Hansma, P. K. Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys J 69, 264–270 (1995).
56. Darling, E. M., Topel, M., Zauscher, S., Vail, T. P. & Guilak, F. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J Biomech 41, 454–464 (2008).
57. Guo, S. L. & Akhremitchev, B. B. Packing density and structural heterogeneity of insulin amyloid fibrils measured by AFM nanoindentation. Biomacromolecules 7, 1630–1636 (2006).
58. Siamantouras, E., Hills, C. E., Younis, M. Y. G., Squires, P. E. & Liu, K.-K. Quantitative investigation of calcimimetic R568 on beta cell adhesion and mechanics using AFM single-cell force spectroscopy. Febs Letters 588, 1178–1183 (2014). 
來(lái)源:Quantum量子科學(xué)儀器貿(mào)易(北京)有限公司
聯(lián)系電話:010-85120280(聯(lián)系我時(shí),請(qǐng)說(shuō)明是在生物器材網(wǎng)了解)
E-mail:info@qd-china.com

用戶名: 密碼: 匿名 快速注冊(cè) 忘記密碼
評(píng)論只代表網(wǎng)友觀點(diǎn),不代表本站觀點(diǎn)。 請(qǐng)輸入驗(yàn)證碼: 8795
Copyright(C) 1998-2024 生物器材網(wǎng) 電話:021-64166852;13621656896 E-mail:info@bio-equip.com