圖 1:電熱爐的加熱線圈(上)和 MEMS 芯片上的加熱線圈(下)
原位樣品桿加熱特性
特性 1:控溫精準(zhǔn)
現(xiàn)在,大家對(duì)于原位樣品桿的加熱原理有了一定了解。那自然會(huì)好奇,原位樣品桿到底是如何使加熱區(qū)達(dá)到指定溫度的呢?
回想高中物理知識(shí),大家或許還記得金屬的電阻隨著溫度的升高而增大。實(shí)際上,金屬電阻和溫度成線性關(guān)系(圖 2),而直線斜率就是電阻溫度系數(shù) (Temperature Coefficient of Resistance, 簡稱 TCR)。知道了 TCR 和某一溫度下的電阻,我們就可以確定溫度與電阻的對(duì)應(yīng)關(guān)系。在這種情況下,溫度數(shù)值和電阻數(shù)值一一互相對(duì)應(yīng)。知道了電阻,就可以計(jì)算出溫度,反之亦然。
圖 2:電阻和溫度呈線性關(guān)系
那我們是如何測量加熱區(qū)域的電阻呢,其實(shí)還是我們?cè)谖锢碚n堂上所學(xué)的電阻計(jì)算公式:
電阻=電壓/電流
只不過,Wildfire 加熱芯片對(duì)于電阻的測量采用了一種更為準(zhǔn)確的方式——四探針法(圖3左)。相較于傳統(tǒng)的測量方法(圖 3 右),四探針法因?yàn)榫徒~外設(shè)置了兩個(gè)觸點(diǎn),可以更直接地測量線圈(Rheater)的電壓,避免引入回路中接觸電阻(Rcontact)、導(dǎo)線電阻(Rcable、Rwires)等的電壓。由此所測得的電壓才是真正的線圈電壓,從而計(jì)算出來的電阻也就是準(zhǔn)確的線圈阻值。
圖 3:四探針法測電阻(左)和傳統(tǒng)測量方法(右)
圖 4:Wildfire 原位樣品桿加熱芯片,采用四電極設(shè)計(jì)
每一組加熱芯片在出廠時(shí),都經(jīng)過了校準(zhǔn)測試,并計(jì)算出了獨(dú)立的 TCR 值和R0 (室溫時(shí)的線圈電阻)。知道了 TCR 和 R0,就可以確定微線圈的電阻-溫度關(guān)系,再加上用四探針法所準(zhǔn)確測量的電阻值,我們就可以知道加熱線圈當(dāng)前的準(zhǔn)確溫度。
當(dāng)我們把樣品固定在芯片上開始實(shí)驗(yàn)時(shí),微線圈通過上述方式對(duì)樣品進(jìn)行加熱。在升溫過程中,線圈和樣品發(fā)生熱量交換。樣品受熱時(shí)可能會(huì)由于結(jié)構(gòu)、成分變化,給加熱過程帶來動(dòng)態(tài)干擾。為了進(jìn)一步確保溫度的準(zhǔn)確和穩(wěn)定,我們引入了閉環(huán)反饋機(jī)制(Closed Loop Feedback Mechanism, 圖 5),用來實(shí)時(shí)響應(yīng)溫度波動(dòng),瞬間做出功率調(diào)整,最終可以達(dá)到 0.005 ºC 的溫度穩(wěn)定性。
圖 5:四電極(二加熱&二感知),加熱線圈(左)和閉環(huán)反饋機(jī)制(右)
此外,這種機(jī)制也有助于實(shí)現(xiàn)快速且準(zhǔn)確的變溫,為探究變溫過程中的結(jié)構(gòu)變化帶來了極大便利(圖 6)。
圖 6:在 300ºC 和 400ºC 之間往復(fù)變溫,Cu3Au 在簡立方相(SC)和面心立方相(FCC)之間發(fā)生可逆相變(相變點(diǎn) 390ºC)。借助選區(qū)電子衍射(SAED)可以直接觀察到兩種相的反復(fù)切換。
特性 2:穩(wěn)定的高溫圖像
目前市面上主流的原位透射電鏡加熱方案都采用芯片式設(shè)計(jì),為了避免加熱器與樣品接觸發(fā)生化學(xué)反應(yīng)或加熱電流流經(jīng)樣品,一般都會(huì)在加熱器上包覆一層超薄氮化硅(SiN)薄膜用以和樣品隔離。溫度改變時(shí),SiN 薄膜會(huì)發(fā)生鼓包變形,薄膜上承載的樣品也會(huì)跟著發(fā)生位移,焦距會(huì)變化,進(jìn)而圖像模糊,甚至樣品可能會(huì)漂出視野。
得益于獨(dú)家專利,DENSsolutions 優(yōu)化設(shè)計(jì)的加熱芯片在室溫至 500 ºC 區(qū)間內(nèi)的焦距變化不超過 300 nm。在此范圍內(nèi),用戶只需再次稍微調(diào)焦即可恢復(fù)圖像清晰度。實(shí)際上,目前采用最新設(shè)計(jì)的新款芯片要比它的上一代產(chǎn)品的鼓包變形要小得多(圖 7),在 500 ºC 以內(nèi)變形可以忽略不計(jì),即使到了 1300 ºC 形變量也不到 7 μm。
圖 7:采用了最新設(shè)計(jì)的芯片(左)比上一代芯片(右)的受熱鼓包形變更小。
相反,如果是未經(jīng)優(yōu)化設(shè)計(jì)的普通芯片,才剛加熱到 200 ºC 時(shí),焦距變化就遠(yuǎn)大于 200 nm,用戶就不得不移動(dòng)樣品臺(tái)的物理 Z 軸來補(bǔ)償該變化。這種操作比較耗時(shí),很可能會(huì)錯(cuò)過重要的反應(yīng)過程。如果不移動(dòng)、只調(diào)焦的話,則可能會(huì)帶來像差,進(jìn)而影響圖像質(zhì)量。
鼓包不僅會(huì)帶來 Z 方向上的焦距變化,也會(huì)引起 X、Y 方向上的圖像漂移。原位實(shí)驗(yàn)研究某一顆;蚰骋晃^(qū)時(shí),需要在整個(gè)溫度變化過程中都可以觀察到目標(biāo)區(qū)域。漂移較小所帶來的好處就是——即使升溫再高,樣品始終在視野范圍內(nèi),還可以被觀察到(圖 8)。否則,升到某一溫度時(shí)顆粒就可能漂出視野,不移動(dòng)樣品臺(tái)就無法找到樣品。如果漂移再多、再快的話,即使操作樣品臺(tái)也永遠(yuǎn)無法找到這個(gè)樣品了。
圖 8:即使升溫至 1300 ºC 后,所關(guān)注的納米顆粒依舊在視野中。
Wildfire 原位加熱桿加熱樣品時(shí),漂移率小于 0.5 nm/min,升溫至 350 ºC 時(shí)漂移小于 20 nm (視頻 1),升溫至 1000 ºC 時(shí)漂移小于 200 nm。
特性 3:高溫 EDS 分析
進(jìn)行 EDS (能量分散譜,即能譜)分析時(shí),探測器采集來自樣品的特征 X 射線,轉(zhuǎn)換成電壓信號(hào)進(jìn)行分通道計(jì)數(shù),根據(jù)不同能量 X 射線對(duì)應(yīng)的計(jì)數(shù)量,可以得出各元素的百分含量。從原理上講,其他電磁波諸如紅外線、可見光、紫外線也可以激發(fā) EDS 探測器,帶來計(jì)數(shù)量,但 EDS 不能用這些計(jì)數(shù)進(jìn)行有效分析。
線圈溫度上升時(shí)會(huì)發(fā)光發(fā)熱,也就是會(huì)產(chǎn)生可見光和紅外線。這些額外的電磁波會(huì)被 EDS 探測器接收,產(chǎn)生大量無效計(jì)數(shù),甚至淹沒關(guān)鍵的特征 X 射線計(jì)數(shù),使計(jì)數(shù)器達(dá)到飽和上限,導(dǎo)致無法進(jìn)行有效分析。要想在加熱的同時(shí)實(shí)現(xiàn)可靠的高溫 EDS 分析,就要盡量減少熱輻射的產(chǎn)生。
圖 9:EDS 探測器構(gòu)造,可以看到晶體后方連著傳感器和冷阱,以保證低溫。
得益于先進(jìn)的 MEMS 設(shè)計(jì),Wildfire 芯片僅需要毫瓦級(jí)的功率即可對(duì)微區(qū)進(jìn)行精確可靠的溫度控制。如此小的加熱功率,它所產(chǎn)生的紅外輻射自然也是少之又少的。因此,即便在更高的溫度下,依舊可以獲得可靠的 EDS 結(jié)果。
圖 10:高溫下 Au/Pd 納米顆粒的 EDS 面掃結(jié)果
特性 4:溫度均勻一致
前文我們提到,微線圈的加熱原理是把電能轉(zhuǎn)換成熱能。這種焦耳生熱的效率與電阻有關(guān)——電阻越大產(chǎn)生的熱量就越多。下圖中我們可以看到,加熱線圈外圍導(dǎo)線明顯較細(xì),而內(nèi)圈導(dǎo)線較寬。這樣外圍線圈產(chǎn)生的熱量較多,內(nèi)圈產(chǎn)生的熱量較少,一定程度上可以抵消由中心向外圍的溫度梯度。如果是導(dǎo)線粗細(xì)一致,產(chǎn)生熱量相同,毫無疑問中心溫度會(huì)更高,自然就會(huì)有由內(nèi)向外的溫度由高到低的梯度。采用這樣的設(shè)計(jì),加熱區(qū)域的溫度均勻性也就無法得到保證。
圖 11:Wildfire 芯片加熱區(qū)的線圈排布和溫度均勻性分布
通過這種線圈設(shè)計(jì)方式,全區(qū)域溫度一致性優(yōu)于 98%。甚至,在最中心的兩個(gè)圓形窗口,溫度一致性高達(dá) 99.5%!