圖 1. 抗生素按照作用機制分類[1]
圖 2. 兩種不同的轉(zhuǎn)染方式[4]
A. 穩(wěn)定轉(zhuǎn)染; B. 瞬時轉(zhuǎn)染
在原核/真核生物轉(zhuǎn)染實驗中常用的抗生素有很多,例如嘌呤霉素、G418、卡那霉素、四環(huán)素和博來霉素等等。
嘌呤霉素是一種氨基核苷類抗生素,是真核和原核生物中蛋白質(zhì)翻譯的有效抑制劑。如圖 3 所示,嘌呤霉素通過模擬氨酰化 tRNA (aa-tRNA) 的 3' 末端,代替正常氨基酸參與翻譯延長過程。它通過核糖體肽基轉(zhuǎn)移酶中心 (PTC) 催化摻入新生鏈的 C 末端,阻止進(jìn)一步延伸,導(dǎo)致翻譯過早的終止,從而抑制了蛋白質(zhì)合成。
圖 3. 嘌呤霉素的作用機制[6]
編碼嘌呤霉素抗性的基因——嘌呤霉素 N-乙酰轉(zhuǎn)移酶 (PAC) 的 pac 基因,是從 Streptomyces alboniger 中分離出來的,早在 1988 年,PAC 就首次被用作分離穩(wěn)定轉(zhuǎn)染的哺乳動物細(xì)胞系的顯性選擇標(biāo)記。
Mikołaj Słabicki 等在 Nature 上發(fā)表的 Small-molecule-induced polymerization triggers degradation of BCL6 中使用嘌呤霉素篩選抗性的 HEK293TCas9 細(xì)胞。首先將 HEK293TCas9 細(xì)胞進(jìn)行慢病毒轉(zhuǎn)染,然后再用嘌呤霉素孵育進(jìn)行篩選。因低濃度的嘌呤霉素對活細(xì)胞具有毒性,所以篩選后存活下來的細(xì)胞即具有嘌呤霉素抗性。Yunhao Chen 等在 Mol Cancer 上發(fā)表的 WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1 中,也是選取了 4 個細(xì)胞系,在用慢病毒轉(zhuǎn)染后,用嘌呤霉素感染細(xì)胞 1 周或更長時間,通過 RT-qPCR 和 WB 分析確定轉(zhuǎn)染的效率。
圖 4. 嘌呤霉素抗性細(xì)胞篩選過程
圖 5. G418 抗性細(xì)胞篩選過程[14]
注: 只有經(jīng)轉(zhuǎn)座子 Tn5 或 Tn601 的 neo 基因轉(zhuǎn)染的細(xì)胞可獲得對 G418 的抗性;G418 的有效濃度因細(xì)胞的生長培養(yǎng)基、培養(yǎng)條件和代謝率而異。■ 四環(huán)素 (Tetracycline)
四環(huán)素,是一種廣譜的抗生素,對多種革蘭氏陽性和革蘭氏陰性細(xì)菌、非典型生物如衣原體、支原體和立克次體以及原生動物寄生蟲具有活性。如圖 7,四環(huán)素與細(xì)菌核糖體的 30S 亞基可逆結(jié)合,抑制氨酰-tRNA 與 mRNA-核糖體復(fù)合物的結(jié)合,即防止任何進(jìn)入的氨;-tRNA 被信使 RNA 中的密碼子識別,從而抑制蛋白質(zhì)的合成。
對四環(huán)素的抗性是通過以下幾種機制之一介導(dǎo)的:四環(huán)素流出、通過將特定細(xì)胞質(zhì)蛋白與核糖體結(jié)合來保護四環(huán)素結(jié)合位點、四環(huán)素修飾或在四環(huán)素結(jié)合位點處對 16S rRNA 進(jìn)行修飾。
圖 7. 四環(huán)素在核糖體位點結(jié)合并阻斷 tRNA 結(jié)合[20]
相關(guān)產(chǎn)品 |
一種氨基核苷類抗生素,抑制蛋白合成。 |
一種氨基糖苷類抗生素,抑制真核生物和原核生物的蛋白質(zhì)合成。 |
一種氨基糖苷類抗生素,抑制一系列革蘭氏陽性和陰性細(xì)菌。 |
一種廣譜抗生素,對多種革蘭氏陽性和革蘭氏陰性細(xì)菌有抑制活性。 |
一種 DNA 損傷劑,抑制 DNA 合成;一種抗腫瘤抗生素。 |
一種氨基糖苷類抗生素,通過核 30S 核糖體亞單位的不可逆結(jié)合發(fā)揮抗菌活性,從而阻斷細(xì)菌蛋白質(zhì)的合成;一種已知的磷脂酶 C (PLC) 抑制劑。 |
一種氨基糖苷類抗生素,抑制革蘭氏陽性菌和革蘭氏陰性細(xì)菌的生長并可抑制組織培養(yǎng)中的多種支原體菌株。 |
參考文獻(xiàn)
1. Garima Kapoor, et al. Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol. Jul-Sep 2017;33(3):300-305.
2. Wanda C Reygaert, et al. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018 Jun 26;4(3):482-501.
3. Vilhelm Müller, Fredrik Westerlund, et al. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping. Sci Rep. 2016 Dec 1;6:37938.
4. Tae Kyung Kim, James H. Eberwine, et al. Mammalian cell transfection: the present and the future. Anal Bioanal Chem. 2010 Aug;397(8):3173-8.
5. Jessica M A Blair, Laura J. V. Piddock, et al. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015 Jan;13(1):42-51.
6. Ranen Aviner, et al. The science of puromycin: From studies of ribosome function to applications in biotechnology. Comput Struct Biotechnol J. 2020 Apr 24;18:1074-1083.
7. Alessandro T. Caputo, Timothy E. Adams, et al. Structure-guided selection of puromycin N-acetyltransferase mutants with enhanced selection stringency for deriving mammalian cell lines expressing recombinant proteins. Sci Rep. 2021 Mar 4;11(1):5247.
8. Mikołaj Słabicki, Eric S. Fischer, Benjamin L. Ebert, et al. Small-molecule-induced polymerization triggers degradation of BCL6. Nature. 2020 Dec;588(7836):164-168.
9. Yunhao Chen, Shusen Zheng, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1.
10. M Küng, Peter Bütikofer, et al. Addition of G418 and other aminoglycoside antibiotics to mammalian cells results in the release of GPI-anchored proteins. FEBS Lett. 1997 Jun 16;409(3):333-8.
11. R L Yenofsky, et al. A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure.
12. Anna Sobiepanek, et al. Implementation of Geneticin in the in vitrocell culture and in vivostudies. Review and Research on Cancer Treatment. Volume 6, Issue 1 (2020)
13. Nicolas Garreau de Loubresse, Marat Yusupov, et al. Structural basis for the inhibition of the eukaryotic ribosome. Nature. 2014 Sep 25;513(7519):517-22.
14. Xuping Xie, et al. Zika Virus Replicons for Drug Discovery. EBioMedicine. 2016 Oct;12:156-160.
15. REZA FARAJI, et al. Effects of kanamycin on the Macromolecular Composition of kanamycin Sensitive Escherichia coli DH5α Strain. Journal of Experimental Microbiology and Immunology (JEMI). April 2006, Vol. 9:31-38
16. Roberto Chulluncuy, et al. Conformational Response of 30S-bound IF3 to A-Site Binders Streptomycin and Kanamycin. Antibiotics (Basel). 2016 Dec 13;5(4):38.
17. António Correia, et al. Identifying Patterns on the Development of Kanamycin Resistance in Staphylococcus epidermidiswith Four-WelledPlates.
18. Chinwe U Chukwudi, et al. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines. Antimicrob Agents Chemother. 2016 Jul 22;60(8):4433-41.
19. Wen Li, Joachim Frank, et al. Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nat Commun. 2013;4:1477.
20. Koltai T. Tetracyclines against cancer. A review. 2015.