综合图区亚洲网友自拍|亚洲黄色网络|成人无码网WWW在线观看,日本高清视频色视频kk266,激情综合五月天,欧美一区日韩一区中文字幕页

English | 中文版 | 手機(jī)版 企業(yè)登錄 | 個(gè)人登錄 | 郵件訂閱
當(dāng)前位置 > 首頁(yè) > 技術(shù)文章 > 葉綠素?zé)晒饧夹g(shù)發(fā)展歷程及測(cè)量原理

葉綠素?zé)晒饧夹g(shù)發(fā)展歷程及測(cè)量原理

瀏覽次數(shù):3342 發(fā)布日期:2017-10-13  來(lái)源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責(zé)任自負(fù)

葉綠素?zé)晒猓鳛楣夂献饔醚芯康奶结,得到了廣泛的研究和應(yīng)用。葉綠素?zé)晒獠粌H能反映光能吸收、激發(fā)能傳遞和光化學(xué)反應(yīng)等光合作用的原初反應(yīng)過程,而且與電子傳遞質(zhì)子梯度的建立及ATP合成和CO2固定等過程有關(guān)。幾乎所有光合作用過程的變化均可通過葉綠素?zé)晒夥从吵鰜?lái),而熒光測(cè)定技術(shù)不需破碎細(xì)胞,不傷害生物體,因此通過研究葉綠素?zé)晒鈦?lái)間接研究光合作用的變化是一種簡(jiǎn)便、快捷、可靠的方法。目前,葉綠素?zé)晒庠诠夂献饔、植物脅迫生理學(xué)、水生生物學(xué)、海洋學(xué)和遙感等方面得到了廣泛的應(yīng)用。

發(fā)展歷史

葉綠素?zé)晒猬F(xiàn)象是由傳教士Brewster首次發(fā)現(xiàn)的。1834年Brewster發(fā)現(xiàn),當(dāng)一束強(qiáng)太陽(yáng)光穿過月桂葉子的乙醇提取液時(shí),溶液的顏色變成了綠色的互補(bǔ)色——紅色,而且顏色隨溶液的厚度而變化,這是歷史上對(duì)葉綠素?zé)晒饧捌?A target=_blank>重吸收現(xiàn)象的首次記載。后來(lái),Stokes(1852)認(rèn)識(shí)到這是一種光發(fā)射現(xiàn)象,并使用了“fluorescence”一詞。1874年,Müller發(fā)現(xiàn)葉綠素溶液稀釋后,熒光強(qiáng)度比活體葉子的熒光強(qiáng)得多。盡管Müller提出葉綠素?zé)晒夂凸夂献饔弥g可能存在相反的關(guān)系,但由于他的實(shí)驗(yàn)沒有對(duì)照,實(shí)驗(yàn)條件控制不嚴(yán)格,因此人們并沒有將葉綠素?zé)晒庹T導(dǎo)(瞬變)現(xiàn)象的發(fā)現(xiàn)歸功于Müller。
Kautsky是公認(rèn)的葉綠素?zé)晒庹T導(dǎo)現(xiàn)象的發(fā)現(xiàn)者。1931年,Kautsky和Hirsch用肉眼觀察并記錄了葉綠素?zé)晒庹T導(dǎo)現(xiàn)象(Lichtenthaler,1992;Govindjee,1995)。他們將暗適應(yīng)的葉子照光后,發(fā)現(xiàn)葉綠素?zé)晒鈴?qiáng)度隨時(shí)間而變化,并與CO2的固定有關(guān)(圖3.1)。他們得到的主要結(jié)論如下:1)葉綠素?zé)晒庋杆偕叩阶罡唿c(diǎn),然后下降,最終達(dá)到一穩(wěn)定狀態(tài),整個(gè)過程在幾分鐘內(nèi)完成。2)曲線的上升反映了光合作用的原初光化學(xué)反應(yīng),不受溫度(0℃和30℃)和HCN處理的影響。若在最高點(diǎn)時(shí)關(guān)掉光,則熒光迅速下降。3)熒光強(qiáng)度的變化與CO2的固定呈相反的關(guān)系,若熒光強(qiáng)度下降,則CO2固定增加。這說明當(dāng)熒光強(qiáng)度降低時(shí),較多的光能用于轉(zhuǎn)變成化學(xué)能。4)奇怪的是(照光后)CO2的固定有一個(gè)延滯期,似乎說明“光依賴”的過程對(duì)CO2固定過程的進(jìn)行是必需的。另一個(gè)未得到解釋的現(xiàn)象是若在熒光誘導(dǎo)結(jié)束后關(guān)掉光,則熒光水平的恢復(fù)需要很長(zhǎng)時(shí)間。在Kautsky的發(fā)現(xiàn)之后,人們對(duì)葉綠素?zé)晒庹T導(dǎo)現(xiàn)象進(jìn)行了廣泛而深入的研究,并逐步形成了光合作用熒光誘導(dǎo)理論,被廣泛應(yīng)用于光合作用研究。由于Kautsky的杰出貢獻(xiàn),葉綠素?zé)晒庹T導(dǎo)現(xiàn)象也被稱為Kautsky效應(yīng)(Kautsky Effect)。
 
量子產(chǎn)量
細(xì)胞內(nèi)的葉綠素分子通過直接吸收光量子或間接通過捕光色素吸收光量子得到能量后,從基態(tài)(低能態(tài))躍遷激發(fā)態(tài)(高能態(tài))。由于波長(zhǎng)越短能量越高,故葉綠素分子吸收紅光后,電子躍遷到最低激發(fā)態(tài);吸收藍(lán)光后,電子躍遷到比吸收紅光更高的能級(jí)(較高激發(fā)態(tài))。處于較高激發(fā)態(tài)的葉綠素分子很不穩(wěn)定,在幾百飛秒(fs,1 fs=10-15 s)內(nèi),通過振動(dòng)弛豫向周圍環(huán)境輻射熱量,回到最低激發(fā)態(tài)(圖3.2)。最低激發(fā)態(tài)的葉綠素分子可以穩(wěn)定存在幾納秒(ns,1 ns=10-9 s)。
 
處于較低激發(fā)態(tài)的葉綠素分子可以通過幾種途徑釋放能量回到穩(wěn)定的基態(tài)。能量的釋放方式有如下幾種(圖3.3)(Campbell et al.,1998;Roháček & Barták,1999;Malkin & Niyogi,2000):1)重新放出一個(gè)光子,回到基態(tài),即產(chǎn)生熒光。由于部分激發(fā)能在放出熒光光子之前以熱的形式逸散掉了,因此熒光的波長(zhǎng)比吸收光的波長(zhǎng)長(zhǎng),葉綠素?zé)晒庖话阄挥诩t光區(qū)。2)不放出光子,直接以熱的形式耗散掉(非輻射能量耗散)。3)將能量從一個(gè)葉綠素分子傳遞到鄰近的另一個(gè)葉綠素分子,能量在一系列葉綠素分子之間傳遞,最后到達(dá)反應(yīng)中心,反應(yīng)中心葉綠素分子通過電荷分離將能量傳遞電子受體,從而進(jìn)行光化學(xué)反應(yīng)。以上這3個(gè)過程是相互競(jìng)爭(zhēng)的,往往是具有最大速率的過程處于支配地位。對(duì)許多色素分子來(lái)說,熒光發(fā)生在納秒級(jí),而光化學(xué)發(fā)生在ps級(jí),因此當(dāng)光合生物處于正常的生理狀態(tài)時(shí),天線色素吸收的光能絕大部分用來(lái)進(jìn)行光化學(xué)反應(yīng),熒光只占很小的一部分。
 
活體細(xì)胞內(nèi)由于激發(fā)能從葉綠素b葉綠素a的傳遞幾乎達(dá)到100%的效率,因此檢測(cè)不到葉綠素b熒光。在室溫下,絕大部分(約90%)的活體葉綠素?zé)晒鈦?lái)自PSⅡ的天線色素系統(tǒng),而且光合器官吸收的能量只有約3%~5%用于產(chǎn)生熒光(林世青,1996;Krause & Weis,1991)。
 
飽和脈沖技術(shù)工作原理
 
所謂飽和脈沖技術(shù),就是打開一個(gè)持續(xù)時(shí)間很短(一般小于1 s)的強(qiáng)光關(guān)閉所有的電子門(光合作用被暫時(shí)抑制),從而使葉綠素?zé)晒膺_(dá)到最大。飽和脈沖(Saturation Pulse, SP)可被看作是光化光的一個(gè)特例。光化光越強(qiáng),PS II釋放的電子越多,PQ處累積的電子越多,也就是說關(guān)閉態(tài)的電子門越多,F(xiàn)越高。當(dāng)光化光達(dá)到使所有的電子門都關(guān)閉(不能進(jìn)行光合作用)的強(qiáng)度時(shí),就稱之為飽和脈沖。
 
打開飽和脈沖時(shí),本來(lái)處于開放態(tài)的電子門將該用于光合作用的能量轉(zhuǎn)化為了葉綠素?zé)晒夂蜔,F(xiàn)達(dá)到最大值。
經(jīng)過充分暗適應(yīng)后,所有電子門均處于開放態(tài),打開測(cè)量光得到Fo,此時(shí)給出一個(gè)飽和脈沖,所有的電子門就都將該用于光合作用的能量轉(zhuǎn)化為了熒光和熱,此時(shí)得到的葉綠素?zé)晒鉃镕m。根據(jù)Fm和Fo可以計(jì)算出PS II的最大量子產(chǎn)量Fv/Fm=(Fm-Fo)/Fm,它反映了植物的潛在最大光合能力。
 
在光照下光合作用進(jìn)行時(shí),只有部分電子門處于開放態(tài)。如果給出一個(gè)飽和脈沖,本來(lái)處于開放態(tài)的電子門將該用于光合作用的能量轉(zhuǎn)化為了葉綠素?zé)晒夂蜔,此時(shí)得到的葉綠素?zé)晒鉃镕m’。根據(jù)Fm’和F可以求出在照光條件下PSII反應(yīng)中心部分關(guān)閉的情況下的實(shí)際原初光能捕獲效率=ΦPSII=ΔF/Fm’=(Fm’-F)/Fm’,它反映了植物目前的實(shí)際光合效率。
 
在光照下光合作用進(jìn)行時(shí),只有部分電子門處于關(guān)閉態(tài),實(shí)時(shí)熒光F比Fm要低,也就是說發(fā)生了熒光淬滅(quenching)。植物吸收的光能只有3條去路:光合作用、葉綠素?zé)晒夂蜔帷8鶕?jù)能量守恒:1=光合作用+葉綠素?zé)晒?熱?梢缘贸觯喝~綠素?zé)晒?1-光合作用-熱。也就是說,葉綠素?zé)晒猱a(chǎn)量的下降(淬滅)有可能是由光合作用的增加或熱耗散的增加引起的。由光合作用的引起的熒光淬滅稱之為光化學(xué)淬滅(photochemical quenching, qP);由熱耗散引起的熒光淬滅稱之為非光化學(xué)淬滅(non-photochemical quenching, qN或NPQ)。光化學(xué)淬滅反映了植物光合活性的高低;非光化學(xué)淬滅反映了植物耗散過剩光能為熱的能力,也就是光保護(hù)能力。
 
光照狀態(tài)下打開飽和脈沖時(shí),電子門被完全關(guān)閉,光合作用被暫時(shí)抑制,也就是說光化學(xué)淬滅被全部抑制,但此時(shí)熒光值還是比Fm低,也就是說還存在熒光淬滅,這些剩余的熒光淬滅即為非光化學(xué)淬滅。淬滅系數(shù)的計(jì)算公式為:qP=(Fm’-Fs)/Fv’=1-(Fs-Fo’)/(Fm’-Fo’);qN=(Fv-Fv’)/Fv=1-(Fm’-Fo’)/(Fm-Fo);NPQ=(Fm-Fm’)/Fm’=Fm/Fm’-1。
 
當(dāng)F達(dá)到穩(wěn)態(tài)后關(guān)閉光化光,同時(shí)打開遠(yuǎn)紅光(Far-red Light, FL)(約持續(xù)3-5 s),促進(jìn)PS I迅速吸收累積在電子門處的電子,使電子門在很短的時(shí)間內(nèi)回到開放態(tài),F(xiàn)回到最小熒光Fo附近,此時(shí)得到的熒光為Fo’。由于在野外測(cè)量Fo’不方便,因此野外版的調(diào)制熒光儀(除PAM-2100WATER-PAM)外,多數(shù)不配置遠(yuǎn)紅光。此時(shí)可以直接利用Fo代替Fo’來(lái)計(jì)算qP和qN,盡管得到的參數(shù)值有輕微差異,但qP和qN的變化趨勢(shì)與利用Fo’計(jì)算時(shí)是一致的。由于NPQ的計(jì)算不需Fo’,近10幾年來(lái)得到了越來(lái)越廣泛的應(yīng)用。
來(lái)源:點(diǎn)將(上海)科技股份有限公司
聯(lián)系電話:18988436267
E-mail:zqq@dianjiangtech.com

標(biāo)簽: 葉綠素?zé)晒?/a>
用戶名: 密碼: 匿名 快速注冊(cè) 忘記密碼
評(píng)論只代表網(wǎng)友觀點(diǎn),不代表本站觀點(diǎn)。 請(qǐng)輸入驗(yàn)證碼: 8795
Copyright(C) 1998-2024 生物器材網(wǎng) 電話:021-64166852;13621656896 E-mail:info@bio-equip.com