藍(lán)光誘導(dǎo)的H+和Ca2+流與植物的向光性 | |
藍(lán)光誘導(dǎo)黃化野生型和向光素突變體擬南芥幼苗的H+和Ca2+流
| |
藍(lán)光是控制植物生長(zhǎng)和形態(tài)發(fā)育的重要因子,引起植物子葉擴(kuò)展,抑制胚軸伸長(zhǎng),這些反應(yīng)發(fā)生的同時(shí)或者隨后伴隨著膜電勢(shì)和離子轉(zhuǎn)運(yùn)的變化。非損傷微測(cè)技術(shù)由于其非損傷性、長(zhǎng)時(shí)間監(jiān)測(cè)、動(dòng)態(tài)測(cè)量和易操作的特點(diǎn)則能非常好地研究離子轉(zhuǎn)運(yùn)的問題。 使用非損傷微測(cè)技術(shù)(MIFE)研究了H+和Ca2+離子流動(dòng)力學(xué)和擬南芥藍(lán)光響應(yīng)的關(guān)系:發(fā)現(xiàn)藍(lán)光處理的最初10min內(nèi)誘導(dǎo)了H+和Ca2+轉(zhuǎn)運(yùn)體活性的顯著變化,3-5min時(shí)變化達(dá)到最大,藍(lán)光立即誘導(dǎo)了野生型和phot2突變體Ca2+內(nèi)流,而phot1和phot1/phot突變體中Ca2+流保持穩(wěn)定,說明PHOT1調(diào)節(jié)Ca2+從質(zhì)外體吸收進(jìn)入細(xì)胞質(zhì);另外,發(fā)現(xiàn)光受體調(diào)節(jié)的H+和Ca2+流存在于切掉胚軸尖端的幼苗,并可能也存在于子葉中,沿著子葉彎勾到胚軸處觀察到了Ca2+和H+濃度有波浪形的變化。Ca2+流在藍(lán)光處理下幾乎立即就出現(xiàn),但是H+流滯后了1.5min,而在野生型中H+流變化很小。 在植物的向光反應(yīng)的信號(hào)轉(zhuǎn)導(dǎo)途徑過程中,細(xì)胞內(nèi)的[Ca2+]需要維持在一個(gè)較高的水平,而PHOT1調(diào)節(jié)質(zhì)外體中的Ca2+進(jìn)入細(xì)胞質(zhì)。這項(xiàng)工作對(duì)于認(rèn)識(shí)植物的向光反應(yīng)的動(dòng)態(tài)過程非常有意義,通過H+和Ca2+的離子動(dòng)力學(xué)有助于揭開植物響應(yīng)藍(lán)光的機(jī)制。 |
上圖: 藍(lán)光處理后胚軸和子葉的H+、Ca2+流和pH變化(正值為內(nèi)流) |
Ion flux kinetics associated with blue light (BL) treatment of two wild types (WTs) and the phot1, phot2 and phot1/phot2 mutants of Arabidopsis were studied by using the MIFE noninvasive ion-selective microelectrode technique. BL induced significant changes in activity of H+ and Ca2+ transporters within the first 10 min of BL onset, peaking between 3 and 5 min. In all WT plants and in phot2 mutants, BL induced immediate Ca2+ influx. In phot1 and phot1/phot2 mutants, net Ca2+ flux remained steady. It is suggested that PHOT1 regulates Ca2+ uptake into the cytoplasm from the apoplast. Changes in ion fluxes were measured from cotyledons of intact seedlings and from the cut top of the hypocotyl of decapitated seedlings. Thus the photoreceptors mediating BL-induced Ca2+ and H+ fluxes are present in the rest of the decapitated seedling and probably in the cotyledons as well. The H+ and Ca2+ flux responses to BL appear not to be linked because, (i) when changes were observed for both ions, Ca2+ flux changed almost immediately, whereas H+ flux lagged by about 1.5 min; (ii) in the Wassilewskija ecotype, changes in H+ fluxes were small. Finally, wave-like changes in Ca2+ and H+ concentrations were observed along the cotyledon–hook axis regardless of its orientation to the light.