上海澤泉科技股份有限公司多年來(lái)秉承推進(jìn)中國(guó)生態(tài)環(huán)境改善、農(nóng)業(yè)興國(guó)的理念,服務(wù)涉及植物表型育種,植物生理生態(tài),水文水利,農(nóng)業(yè)工程等領(lǐng)域的科研和技術(shù)支持。為更好地服務(wù)全國(guó)科研用戶,促進(jìn)植物表型育種、表型技術(shù)推廣,同時(shí)促進(jìn)相關(guān)研究設(shè)施和平臺(tái)的建設(shè),上海澤泉科技股份有限公司將于2018年3月16日下午在上海孫橋現(xiàn)代農(nóng)業(yè)園區(qū)AgriPheno高通量植物表型平臺(tái)舉辦“2018澤泉植物表型技術(shù)Workshop”。Workshop內(nèi)容包括植物表型研究技術(shù)研究進(jìn)展交流、AgriPheno高通量植物表型平臺(tái)及科研項(xiàng)目介紹以及平臺(tái)參觀考察。
現(xiàn)向各單位植物研究、農(nóng)業(yè)建設(shè)領(lǐng)域科研人員發(fā)出誠(chéng)摯邀請(qǐng),歡迎您出席本次workshop與參會(huì)者交流領(lǐng)域內(nèi)的科研進(jìn)展,期待您的光臨。
一、主辦單位:上海澤泉科技股份有限公司
二、會(huì)議時(shí)間與地點(diǎn)
時(shí)間:2018年3月16日下午
地點(diǎn):上海乾菲諾農(nóng)業(yè)科技有限公司(AgriPheno高通量植物表型平臺(tái)),上海市浦東新區(qū)沔北路185號(hào)孫橋現(xiàn)代農(nóng)業(yè)園C9-1
三、會(huì)議日程
13:00-14:00
Plant Phenomics and Image Analysis (植物表型組學(xué)與圖像分析)
主講:Ji Zhou, 周濟(jì),英國(guó)BBSRC Earlham Institute,University of East Anglia & 南京農(nóng)業(yè)大學(xué)表型交叉研究中心
14:05-14:45
Remote Sensing and IoT for Phenomics(遙感和物聯(lián)網(wǎng)技術(shù)在表型研究中的應(yīng)用)
主講:Daniel Reynolds(周濟(jì)實(shí)驗(yàn)室, 英國(guó)BBSRC Earlham Institute)
14:50-15:30
Machine Learning for Plant Phenomics (機(jī)器學(xué)習(xí)在植物表型中的應(yīng)用)
主講:Aaron Bostrom (周濟(jì)實(shí)驗(yàn)室, 英國(guó)BBSRC Earlham Institute)
15:40-16:20
Introduction of AgriPheno Plant Phenotyping Facility and Research Project (AgriPheno植物表型平臺(tái)介紹及科研項(xiàng)目進(jìn)展)
主講:Hong Zhang, 張弘, 上海澤泉科技股份有限公司
16:25-17:00
Engineering Cost-effective Intelligent Phenotyping Complete Set Instrumentation/facilities for precise crop breeding (大宗作物表型篩選精準(zhǔn)育種成套裝備、儀器與系統(tǒng))
主講:Liang Gong,貢亮,上海交通大學(xué)
四、參會(huì)須知
1、參會(huì)回執(zhí):請(qǐng)參會(huì)人員于3月14日前將參會(huì)回執(zhí)通過(guò)電子郵件發(fā)送至郵箱:vivi.xu@zealquest.com,或傳真021-32555117。我們將根據(jù)參會(huì)回執(zhí)協(xié)助推薦住宿和安排參會(huì)事宜。掃描/點(diǎn)擊二維碼,填寫信息亦可參會(huì)。
2、Workshop費(fèi)用:參會(huì)免費(fèi)。交通、食宿自理。
五、會(huì)務(wù)組聯(lián)系方式
聯(lián)系人:徐靜萍,郵箱:vivi.xu@zealquest.com,電話:021-32555118 分機(jī):8043
地址:上海市普陀區(qū)金沙江路1038號(hào)華大科技園2號(hào)樓8層 郵編:200062
六、附件
附件1:2018澤泉植物表型技術(shù)Workshop 參會(huì)回執(zhí)
附件2:會(huì)場(chǎng)交通
附件3:報(bào)告摘要
上海澤泉科技股份有限公司
2018年3月12日
附件1:2018澤泉植物表型技術(shù)Workshop 回執(zhí)
工作單位 |
|||||
通信地址 |
|||||
郵編 |
傳真 |
電話 |
|||
姓名 |
性別 |
職稱/職務(wù) |
手機(jī) |
|
備注接送地鐵站 |
請(qǐng)于3月14日前將參會(huì)回執(zhí)通過(guò)電子郵件發(fā)送至郵箱:vivi.xu@zealquest.com,或傳真發(fā)送至021-32555117。
附件2:會(huì)場(chǎng)交通
上海乾菲諾農(nóng)業(yè)科技有限公司
地址:上海市浦東新區(qū)沔北路185號(hào)孫橋現(xiàn)代農(nóng)業(yè)園C9-1
交通:地鐵16號(hào)線羅山路站,2號(hào)線廣蘭路站下車,我司安排車輛接送。具體信息可在百度地圖中搜索“上海乾菲諾農(nóng)業(yè)科技有限公司”。
附件3:報(bào)告摘要
● Plant Phenomics and Image Analysis (植物表型組學(xué)與圖像分析)
主講Ji Zhou, 周濟(jì),英國(guó)BBSRC Earlham Institute,University of East Anglia, & 南京農(nóng)業(yè)大學(xué)表型交叉研究中心
With the maturation of high-throughput and low-cost genotyping platforms, the current bottleneck in breeding, cultivation and crop research lies in phenotyping and phenotypic analyses. Recent phenotyping technologies invented by industry and academia are capable of producing large image- and sensor-based data. However, how to effectively transform big data into biological knowledge is an immense challenge that urgently requires a cross-disciplinary effort. In the talk, I will introduce our research-based phenotyping platforms at Norwich Research Park, ranging from the sky to cells, including AirSurf (automated aerial analytic software), Phenospex (an in-field 3D laser scanning platform), CropQuant (a low-cost distributed crop monitoring system), SeedGerm (a machine-learning based seed germination device), Leaf-GP (an open-source software for quantifying growth phenotypes), and high content screening systems for cellular phenotype measurements. Through these examples, I will introduce our multi-scale phenomics solutions developed for different biological questions on bread wheat, brassica, and other plant species, including linking phenotypic analyses to the assessment of genes controlling performance-related traits, QTL analysis of yield potential, gene discovery using near isogenic lines (NILs), quantifying genotype-by-environment interactions (GxE) to assess environmental adaptation, etc. I will also talk about how to utilise open scientific and numeric libraries for data calibration, annotation, image analysis and phenotypic analyses.
● Remote Sensing and IoT for Phenomics(遙感和物聯(lián)網(wǎng)技術(shù)在表型研究中的應(yīng)用)
主講Daniel Reynolds(周濟(jì)實(shí)驗(yàn)室, 英國(guó)BBSRC Earlham Institute)
A high-level overview of remote sensing, Internet of Things (IoT) and how they are applied to Plant Phenomics. Latest remote sensing and IoT provide high-resolution and high-frequency environmental measurements when compared to traditional manual methods. Distributed sensor networks such as the CropQuant platform allow researchers to record the environment of in-field or indoor experiments without manual intervention, which allow the capture of dynamic environmental changes throughout key growing stages. The lecture will introduce the techniques and applications of IoT and remote sensing in plant phenomics, covering (1) what is IoT with respect to sensing networks, (2) the hardware available and suitable for IoT including digital and analogue sensors, (3) single-board computers and microcontrollers, (4) control software and interfacing with IoT devices, (5) data transmission and retrieval, and finally (6) the management of multiple devices and collation of remote data. The lecture will not cover technical details and mainly focus on the introduction of how remote sensing and IoT could be used for phenomics.
● Machine Learning for Plant Phenomics (機(jī)器學(xué)習(xí)在植物表型中的應(yīng)用)
主講 Aaron Bostrom (周濟(jì)實(shí)驗(yàn)室, 英國(guó)BBSRC Earlham Institute)
An introduction to machine learning and how to apply it in plant phenomics. Machine learning is a tool that has been gaining attention due to many advances in the last decade. This talk aims to provide a summary of machine learning techniques, simple and intuitive explanations and demonstrations about how machine learning has been applied to different real-world problems. In particular, generalisation and how to design training datasets and experimentation with machine learning in mind will be explained. The lecture will finish with some of Aaron’s current and previous work, and where machine learning have been applied to real world problems such as our AirSurf on lettuces yield prediction as well as SeedGerm software on seed germination measurements together with industrial leaders such as G’s Growers and Syngenta.
● Engineering Cost-effective Intelligent Phenotyping Complete Set Instrumentation/facilities for precise crop breeding (大宗作物表型篩選精準(zhǔn)育種成套裝備、儀器與系統(tǒng))
主講Liang Gong,貢亮,上海交通大學(xué)
It plays an important role for high-throughput phenotyping in cutting-edge crop breeding field, and this automation generates heterogeneous measuring data for subsequent meta-analyses, modeling, and ground-truth dataset building. Traditional researches focus on an individual instrument or data processing algorithms. We advocate that the crop breeeding issue has to be addressed with a systematic paradigm, ranging from building cost-effective infrastructure to leveraging crowd-sourcing applications, and to process standardization.The roadmap for conducting phenotyping-based breeding is depicted as, first, plant organ-specific phenotyping parameter index sets for crop breeding are optimally determined, and corresponding phenotyping instrumentation are introduced. Second, an entity-relationship data aggregation model is built to organize and present the phenotyping big data; Third, a paradigm of creating a phenotyping database is proposed to facilitate crop breeding. Finally, a formal GPEM database for constructing a crop breeding phenotyping database is established, which highlights the plant morphometric data retrieval and data mining. This data aggregation scheme provides an effective tool and exemplary template for dealing with big plant phenotyping data acquired by different devices and equipment under user-defined resolution. The case study for creating a GPEM phenotyping database is step-by-step investigated to show the feasibility and effectiveness of plant phenotyping big-data aggregation.