【干貨】拯救你受傷的DNA-NHEJ與HR
生命極其脆弱,我們每天在電子輻射、紫外線、霧霾等等各種外部環(huán)境及細胞代謝產(chǎn)物等內(nèi)源因素影響下,我們生命的核心-DNA都會受到不同程度的損傷,其中DNA雙鏈斷裂(DSBs,Double strand breaks)是損傷中最為嚴重的一種,然而生命卻又極其強大,我們無時無刻不在受傷,也無時無刻不在自我修復。那么我們的身體里是用什么樣的機制修復DNA損傷呢?且聽我們慢慢道來~
對于DSBs損傷,主要有非同源末端鏈接(Non-homologous end joining,NHEJ)和同源重組(Homologous recombination,HR)兩種,單鏈退火修復一般發(fā)生在串聯(lián)同源DNA序列中,研究較少[1](圖1)。下面小編就給大家具體介紹一下日常體內(nèi)是如何通過這兩種方式修復拯救我們受傷的DNA的。
圖1. DSBs 修復途徑
Alternative pathways of DNA double-strand break repair. Homologous recombination is the preferred route in yeast. It involves invasion of the broken DNA strands into a homologous DNA duplex molecule. This process requires Rad52 (a DNA end-binding protein), Rad51 (which forms filaments along the unwound DNA strands), DNA polymerases and other less well-characterized gene products. The DNA ends are ligated by DNA ligase I and the interwound DNA strands are separated, probably by another protein complex, with no loss of genetic information. Only one of many possible recombination products is shown here. Single-strand annealing takes place between two homologous DNA sequences in tandem (yellow and orange boxes) by a less well-studied mechanism. It also requires Rad52, and extensive degradation of the two unannealed strands results in considerable loss of genetic material. Nonhomologous end joining rejoins the two broken ends directly. It requires the DNA end-binding protein Ku which, in mammalian cells, forms a complex with DNA-PKcs(red). Other steps in this process involve the Rad50–Mre11—Nbs1 complex in mammals (which may also be involved in homologous recombination, at least in yeast) and the XRCC4—DNA ligase IV complex. Few, or no, bases are missing from the products of nonhomologous end joining.
非同源末端鏈接-NHEJ
NHEJ是一種簡單粗暴高效的修復方式,斷裂了?管它三七二十一,趕快連起來!就是這個暴脾氣!
NHEJ: 我這暴脾氣![6]
它就是通過DNA連接酶將DSBs末端直接鏈接的一種修復過程,不依賴于同源DNA序列。Ku蛋白(Ku70/Ku80)復合物識別結(jié)合到DSBs末端,Ku-DNA復合物招募DNA依賴蛋白激酶催化亞基(DNA-PKcs)激活其激酶活性,將自身磷酸化啟動NHEJ通路,吸引重組酶Artemis加入處理DNA末端,然后召集XRCC4- DNAligase4 –XLF復合物促使DNA末端進行連接[2] 。
NHEJ這種暴脾氣雖然迅速高效,但是會有一系列副作用,就是可能造成一些序列缺失,同時也會造成一些片段的插入,即所謂不夠精確。
圖2. NHEJ
Rapid association of Ku to DSBs promotes NHEJ by recruiting DNA-PKcs. Sequential phosphorylation events on multiple DNA-PKcs amino acid clusters favors the initial processing of DNA ends by ARTEMIS, followed by DNA-PKcs-dependent protection of DNA ends required for DNA ligation.
同源重組-HR
HR是另一種處女座式追求懷舊與完美的修復方式:我要找到我自己!一個都不能多!一個都不能少!
HR: 我就是這么完美![7]
HR需要以未受傷的姐妹染色單體的同源序列作為其修復的模板。MRN復合物識別DSBs,結(jié)合到DNA末端,修復第一步就是要將DNA末端進行修剪,MRN復合物和轉(zhuǎn)錄因子CtIP(CtBP-interacting protein)促進DNA末端切割過程,造成5’末端DNA降解,產(chǎn)生3’單鏈DNA(ssDNA),3’ ssDNA被復制蛋白A(Replication protein A,RPA)包被,使其免受核酸酶的降解,去除二級結(jié)構(gòu);然后由BRCA2蛋白介導,RPA被重組酶RAD51替換,形成核蛋白絲尋找姐妹染色單體上的同源序列,RAD51蛋白介導侵入DNA雙鏈模板,與同源DNA序列配對形成D-Loop結(jié)構(gòu),D-Loop延伸或與另一個末端連接,完成修復過程[3] 。
圖3. HR
The MRN-CtIP-complex starts resection on the breaks to generate single stranded DNA (ssDNA). After resection the break can no longer be repaired byNHEJ. The ssDNA is first coated by RPA, which is subsequently replaced by Rad51 with the help of BRCA2. These Rad51 nucleoprotein filaments mediate strand invasion on the homologous template. Extension of the D-loop and capture of the second end lead to repair.
HR強迫癥式的修復,雖然速度較慢,效率較低,但是精準,可以使基因組得到完美修復,完好如初!
經(jīng)過這一番介紹,大家對我們的DNA雙鏈修復小伙伴應(yīng)該有了初步印象了吧?
簡言之,他們的特點就是:NHEJ的修復是快速非精確的,過程中可能會隨機的引入和去除幾個堿基,整個細胞周期都有發(fā)生,在G1期及S期發(fā)揮著重要作用;HR的修復是復雜而精確的,但是需要同源序列模板,只能發(fā)生在細胞G2/S期。針對不同DSBs損傷類型機體會選擇性的啟動NHEJ或HR修復機制,拯救已經(jīng)受傷的DNA。
說到這里,大家是不是對DNA修復機制加深了一點了解呢,只有掌握學習了才能更好的應(yīng)用。
學以致用
隨著科學家們對這兩種修復方式的深入研究和解讀,這一修復機制被逐漸應(yīng)用于基因編輯技術(shù),用于定向改造基因。研究者采用核酸酶技術(shù)使DNA雙鏈有目的的產(chǎn)生斷裂,利用這一機制調(diào)控目的基因表達或引入選擇性標記。
沒有模板的情況下,利用NHEJ修復,隨機插入或缺失堿基造成基因失活;有模板存在的情況下,可通過同源重組的方式在剪切位點引入目的修飾基因,實現(xiàn)基因的定點敲進[4] (圖4)。
圖4. Nuclease-induced genome editing
Nuclease-induced double strand breaks (DSBs) can be repaired by nonhomologous end joining (NHEJ) or homology-directed repair (HDR) pathways. Imprecise NHEJ mediated repair can produce insertion and/or deletion mutations of variable length at the site of the DSB. HDR-mediated repair can introduce precise point mutations or insertions from a single-stranded or double stranded DNA donor template.
以CRISPR/Cas9技術(shù)為例,如圖5a,Cas9蛋白剪切DNA雙鏈形成DSBs,利用NHEJ修復機制,隨機缺失或插入堿基造成移碼突變,目的基因?qū)崿F(xiàn)敲除。圖5b,剪切同時引入一段外源基因,NHEJ會將其接入DSBs位點,實現(xiàn)基因插入。圖5c,兩端分別設(shè)置剪切位點,中間片段游離,兩端通過NHEJ機制連接形成大片段基因敲除[4] 。
圖5. (a,b) gRNA-directed Cas9 nuclease can induce indel mutations (a) or specific sequence replacement or insertion (b). (c) Pairs of gRNA-directed Cas9 nucleases can stimulate large deletions or genomic rearrangements (e.g., inversions or translocations).
剪切的同時加入帶外源基因及同源序列,HR機制作用下可實現(xiàn)基因定點精確的敲進和替換。CRISPR/Cas9 介導產(chǎn)生NHEJ的效率遠遠高于HR[5],怎么能讓完美主義的HR小伙伴發(fā)揮更大的作用,提高我們的基因敲進效率呢?
為了實現(xiàn)高效精確的基因定點敲進,百奧賽圖自主研發(fā)的EGE(Extreme Genome Editing System)系統(tǒng),將同源重組效率提高了近20倍(圖6),很大程度的提供了更多精確編輯基因的可能!
圖6. 百奧賽圖自主研發(fā)的EGE(Extreme Genome Editing System)系統(tǒng)
百奧賽圖具有多年制備基因敲除敲進大小鼠的經(jīng)驗,專業(yè)的技術(shù)團隊,需要制備的老師請通過下方聯(lián)系方式聯(lián)系我們哦。
參考文獻:
1.Featherstone, C., & Jackson, S. P. (1999). DNA double-strand break repair. Current Biology, 9(20), R759–R761.
2.Ciccia, A., & Elledge, S. J. (2010). The DNA Damage Response: Making It Safe to Play with Knives. Molecular Cell, 40(2), 179–204.
3.Brandsma, I., & Gent, D. C. (2012). Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integrity, 3(1), 9.
4.Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4), 347–355.
5.Ma, Y., Chen, W., Zhang, X., Yu, L., Dong, W., Pan, S., … Zhang, L. (2016). Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein. RNA Biology, 13(7), 605–612.
6.https:///photo/43172/
7.http://www.yixiaoxi.com/renwuwanmeiyikewanshan.html