2018年,由北京普瑞億科科技有限公司研發(fā)的PRI-8800全自動(dòng)變溫培養(yǎng)土壤溫室氣體在線測(cè)量系統(tǒng),一經(jīng)推出便得到了廣泛關(guān)注。該系統(tǒng)在土壤有機(jī)質(zhì)分解速率、Q10及其調(diào)控機(jī)制方面提供了一整套高效的解決方案,為科研人員提供室內(nèi)變溫培養(yǎng)模擬野外環(huán)境的條件,讓科研可以更廣、更深層次地開展。目前以PRI-8800為關(guān)鍵設(shè)備發(fā)表的相關(guān)文章已達(dá)26篇。
今天與大家分享的是浙江大學(xué)環(huán)境與資源學(xué)院羅忠奎研究團(tuán)隊(duì)在研究土壤有機(jī)碳礦化及其溫度敏感性(Q10)與微生物群落多樣性和組成之間關(guān)系方面取得的進(jìn)展。在該項(xiàng)研究中,研究團(tuán)隊(duì)利用PRI-8800測(cè)定土壤CO2排放速率,為研究結(jié)果提供了有力的數(shù)據(jù)支撐。
土壤微生物驅(qū)動(dòng)著有機(jī)碳的礦化,由于不同微生物群落在代謝效率以及對(duì)不同溫度變化的響應(yīng)存在差異,因此土壤有機(jī)碳礦化及其溫度敏感性(Q10)與微生物群落多樣性和組成之間應(yīng)該存在密切的關(guān)系。然而,這些關(guān)系很少被檢驗(yàn)。
基于此,浙江大學(xué)環(huán)境與資源學(xué)院羅忠奎研究團(tuán)隊(duì)通過室內(nèi)培養(yǎng)實(shí)驗(yàn),評(píng)估了藏東南地區(qū)不同海拔(氣候)梯度中土壤微生物α多樣性對(duì)溫度的響應(yīng)以及r-和k-策略微生物的相對(duì)豐度。
圖.培養(yǎng)第128天的土壤有機(jī)碳礦化速率及其Q10與門水平微生物群落豐度的相關(guān)性;疑硎鞠嚓P(guān)性不顯著(即P > 0.05),彩色網(wǎng)格表示相關(guān)性顯著(P < 0.05),顏色梯度表示相關(guān)性的大小和強(qiáng)度。R5°C-128和R25°C-128分別為5°C和25°C培養(yǎng)溫度下第128天的有機(jī)碳礦化速率。Q10-128為土壤有機(jī)碳在128天培養(yǎng)期間的溫度敏感性。F:新鮮土壤樣品;5、25分別為在5°C和25°C培養(yǎng)的土壤樣品。
在土壤培養(yǎng)實(shí)驗(yàn)設(shè)計(jì)及有機(jī)碳礦化測(cè)定的過程中,研究團(tuán)隊(duì)采用由普瑞億科研發(fā)的PRI-8800全自動(dòng)變溫土壤培養(yǎng)溫室氣體分析系統(tǒng)測(cè)定土壤CO2排放速率(μg CO2-C g−1 SOC day−1),每個(gè)土壤樣品測(cè)定時(shí)間設(shè)置為3分鐘,此數(shù)據(jù)的獲取為該項(xiàng)研究提供了有力的數(shù)據(jù)支撐;诓煌瑴囟认聹y(cè)定的土壤CO2排放速率,計(jì)算了有機(jī)碳礦化的溫度敏感性(Q10)。
研究結(jié)果表明:培養(yǎng)128后測(cè)定的α多樣性以及r-和k-策略微生物的相對(duì)豐度受溫度的顯著影響(P < 0.05),但是這些微生物變量并不能很好地預(yù)測(cè)同步測(cè)定的土壤有機(jī)碳礦化速率。相反,新鮮土壤的微生物群落多樣性以及r-和k-策略微生物的相對(duì)豐度對(duì)不同培養(yǎng)階段的土壤有機(jī)碳礦化速率及其Q10的影響是一致且顯著的(P < 0.05)。與此同時(shí),路徑分析表明,當(dāng)考慮到氣候、土壤有機(jī)碳化學(xué)、物理保護(hù)和土壤性質(zhì)的變化時(shí),微生物α多樣性以及r-和k-策略微生物對(duì)土壤有機(jī)碳礦化速率及其Q10的影響并不是獨(dú)立的。本研究結(jié)果表明,雖然土壤微生物群落的多樣性和組成是土壤有機(jī)碳質(zhì)量和有效性的重要指標(biāo),但它們并不是土壤有機(jī)碳礦化速率及其Q10的根本的決定因素。
相關(guān)研究成果以“Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau”為題發(fā)表在國際SCI期刊Geoderma(IF2022=6.1,中科院一區(qū))。
Zheng, J., Mao, X., Jan van Groenigen, K., Zhang, S., Wang, M., Guo, X. et al. (2024). Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau. 441, 116736.
https://doi.org/10.1016/j.geoderma.2023.116736
截至目前,以PRI-8800為關(guān)鍵設(shè)備發(fā)表的相關(guān)文章已達(dá)25篇,分別發(fā)表在10余種影響因子較高的國際期刊上—
數(shù)據(jù)來源:https://sci.justscience.cn/
很榮幸PRI-8800可以為這些高質(zhì)量學(xué)術(shù)研究貢獻(xiàn)一份力量,感謝各位老師對(duì)普瑞億科產(chǎn)品的支持和信任。如果您成功發(fā)表文章,并且在研究過程中使用了普瑞億科的國產(chǎn)儀器設(shè)備,請(qǐng)與我們公司聯(lián)絡(luò),我們?yōu)槟鷾?zhǔn)備了一份小禮物,以感謝您對(duì)國產(chǎn)設(shè)備以及普瑞億科的信任和支持!
為響應(yīng)國家“雙碳”目標(biāo),針對(duì)國內(nèi)“雙碳”行動(dòng)有效性評(píng)估,普瑞億科全新升級(jí)了PRI-8800 全自動(dòng)變溫培養(yǎng)土壤溫室氣體在線測(cè)量系統(tǒng),結(jié)合了連續(xù)變溫培養(yǎng)和高頻土壤呼吸在線測(cè)量的優(yōu)勢(shì),模式的培養(yǎng)與測(cè)試過程非常簡單高效,這極大方便了大量樣品的測(cè)試或大尺度聯(lián)網(wǎng)的研究,可以有效服務(wù)科學(xué)研究和生態(tài)觀測(cè)。PRI-8800的成功推出,為“雙碳”目標(biāo)研究和評(píng)價(jià)提供了強(qiáng)有力的工具。
戳視頻↓
土壤有機(jī)質(zhì)分解速率(R)對(duì)溫度變化的響應(yīng)非常敏感。溫度敏感性參數(shù)(Q10)可以刻畫土壤有機(jī)質(zhì)分解對(duì)溫度變化的響應(yīng)程度。Q10是指溫度每升高10℃,R所增加的倍數(shù);Q10值越大,表明土壤有機(jī)質(zhì)分解對(duì)溫度變化就越敏感。Q10不僅取決于有機(jī)質(zhì)分子的固有動(dòng)力學(xué)屬性,也受到環(huán)境條件的限制。Q10能抽象地描述土壤有機(jī)質(zhì)分解對(duì)溫度變化的響應(yīng),在不同生態(tài)類型系統(tǒng)、不同研究間架起了一個(gè)規(guī)范的和可比較的參數(shù),因此其研究意義重大。
以往Q10研究通過選取較少的溫度梯度(3-5個(gè)點(diǎn))進(jìn)行測(cè)量,從而導(dǎo)致不同土壤的呼吸對(duì)溫度變化擬合相似度高的問題無法被克服。Robinson最近的研究(2017)指出,最低20個(gè)溫度梯度擬合土壤呼吸對(duì)溫度的響應(yīng)曲線可以有效解決上述問題。PRI-8800全自動(dòng)變溫土壤溫室氣體在線測(cè)量系統(tǒng)為Q10的研究提供了強(qiáng)有力的工具,不僅能用于測(cè)量Q10對(duì)環(huán)境變量主控溫度因子的響應(yīng),也能用于測(cè)量其對(duì)土壤含水量、酶促反應(yīng)、有機(jī)底物、土壤生物及時(shí)空變異等的響應(yīng)。PRI-8800為Q10對(duì)關(guān)聯(lián)影響因子的研究,提供了一套快捷、高效、準(zhǔn)確的整體解決方案。
- 可設(shè)定恒溫或變溫培養(yǎng)模式;
- 溫度控制波動(dòng)優(yōu)于±0.05℃;
- 平均升降溫速率不小于1°C/min;
- 307 mL樣品瓶,25位樣品盤;
- 一體化設(shè)計(jì),內(nèi)置CO2 H2O模塊;
- 可外接高精度濃度或同位素分析儀。
為了更好地助力科學(xué)研究,拓展設(shè)備應(yīng)用場(chǎng)景,普瑞億科重磅推出「加強(qiáng)版」PRI-8800——PRI-8800 Plus全自動(dòng)變溫培養(yǎng)土壤溫室氣體在線測(cè)量系統(tǒng)。
1)原狀土凍融過程模擬:氣候變化改變了土壤干濕循環(huán)和凍融循環(huán)的頻率和強(qiáng)度。這些波動(dòng)影響了土壤微生物活動(dòng)的關(guān)鍵驅(qū)動(dòng)力,即土壤水分利用率。雖然這些波動(dòng)使土壤微生物結(jié)構(gòu)有少許改變,但一種氣候波動(dòng)的影響(例如干濕交替)是否影響了對(duì)另一種氣候(例如凍融交替)的反應(yīng),其溫室氣體排放是如何響應(yīng)的?通過PRI-8800 Plus 的凍融模擬,我們可以找出清晰答案。
2)濕地淹水深度模擬:在全球尺度上濕地甲烷(CH4)排放的溫度敏感性大小主要取決于水位變化,而二氧化碳(CO2)排放的溫度敏感性不受水位影響。復(fù)雜多樣的濕地生態(tài)系統(tǒng)不同水位的變化及不同溫度的變化如何影響和調(diào)控著濕地溫室氣體的排放?我們?cè)撊绾瘟炕煌坏淖兓安煌瑴囟鹊淖兓聺竦氐臏厥覛怏w排放?借助PRI-8800 Plus,通過淹水深度和溫度變化的組合測(cè)試,可以查出真相。
3)溫度依賴性的研究:既然溫度的變化會(huì)極大影響土壤呼吸,基于溫度變化的Q10研究成為科學(xué)家研究中重中之重。2017年Robinson提出的最低20個(gè)溫度梯度擬合土壤呼吸對(duì)溫度響應(yīng)曲線的建議,將糾正以往研究人員只設(shè)置3-5個(gè)溫度點(diǎn)(大約相隔5-10℃)進(jìn)行呼吸測(cè)量的做法,該建議能解決傳統(tǒng)方法因溫度梯度少而導(dǎo)致的不同土壤的呼吸對(duì)溫度變化擬合相似度高的問題,更能提升不同的理論模型或隨后模型推算結(jié)果的準(zhǔn)確性。而上述至少20個(gè)溫度點(diǎn)的設(shè)置和對(duì)應(yīng)的土壤呼吸測(cè)量,僅僅需要在PRI-8800 Plus程序中預(yù)設(shè)幾個(gè)溫度梯度即可完成多個(gè)樣品在不同溫度下的自動(dòng)測(cè)量,這將極大提高科學(xué)家的工作效率。
除了上述變溫應(yīng)用案例外,科學(xué)家還可以依據(jù)自己的實(shí)驗(yàn)設(shè)計(jì)進(jìn)行諸如日變化、月變化、季節(jié)變化、甚至年度溫度變化的模擬培養(yǎng),通過PRI-8800 Plus的“傻瓜式”操作測(cè)量,將極大減少科學(xué)家實(shí)驗(yàn)實(shí)施的周期和工作量,并提高了工作效率。
PRI-8800 Plus除了具有上述變溫培養(yǎng)的特色,還可以進(jìn)行恒溫培養(yǎng),抑或是恒溫/變溫交替培養(yǎng),這些組合無疑拓展了系統(tǒng)在不同溫度組合條件下的應(yīng)用場(chǎng)景。
4)水分依賴性的研究:多數(shù)研究表明,在溫度恒定的情況下,Q10很容易受土壤含水量的影響,表現(xiàn)出一定的水分依賴特性。PRI-8800 Plus可以通過手動(dòng)調(diào)整土壤含水量的做法,并在PRI-8800 Plus快速連續(xù)測(cè)量模式下,實(shí)現(xiàn)不同水分梯度條件下土壤呼吸的精準(zhǔn)測(cè)量,而PRI-8800 Plus的邏輯設(shè)計(jì),為短期、中期和長期濕度控制條件下的土壤呼吸的連續(xù)、高品質(zhì)測(cè)量提供了可能。
5)底物依賴性的研究:底物物質(zhì)量與Q10密切相關(guān),這里的底物包含不限于自然態(tài)的土壤,如含碳量,含氮量,易分解/難分解的碳比例、土壤粘粒含量、酸堿鹽度等;也可能包含了某些外源底物,如外源的生物質(zhì)碳、微生物種群、各種肥料、呼吸促進(jìn)/抑制劑、同位素試劑等。通過PRI-8800快速在線變溫培養(yǎng)測(cè)量,能加速某些研究進(jìn)程并獲得可靠結(jié)果,如生物質(zhì)炭在土壤改良過程中的土壤呼吸研究、緩釋肥緩釋不同階段對(duì)土壤呼吸的持續(xù)影響、鹽堿土壤不同改良措施下的土壤呼吸的變化響應(yīng)等等。
6)生物依賴性的研究:土壤呼吸包含土壤微生物呼吸(>90%)和土壤動(dòng)物呼吸(1-10%),土壤微生物群落對(duì)Q10影響重大。通過溫度響應(yīng)了解培養(yǎng)前后的微生物種群和數(shù)量的變化以及對(duì)應(yīng)的土壤呼吸速率的變化有重要意義。外源微生物種群的添加,或許幫助科學(xué)家找出更好的Q10對(duì)土壤生物依賴性的響應(yīng)解析。
1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.
2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.
3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.
4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.
5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.
6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.
7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.
8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.
9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.
10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.
11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.
12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.
13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.
14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.
15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.
16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.
17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.
18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.
19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.
20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.
21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.
22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.
23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.
24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.
25.Liu YH,Xiong DC,Wu C,et al.Effects of exogenous carbon addition on soil carbon emission in a subtropical evergreen broad-leaf forest[J]. Journal of Forest & Environment, 2023, 43(5).
26.Zheng, J., Mao, X., Jan van Groenigen, K., Zhang, S., Wang, M., Guo, X. et al. (2024). Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau. 441, 116736.
如果您對(duì)我們的產(chǎn)品或本期內(nèi)容有任何問題,歡迎致電垂詢:
- 地址:北京市海淀區(qū)瀚河園路自在香山98-1號(hào)樓
- 電話:010-51651246 88121891
- 郵箱:info@pri-eco.com