對(duì)樣本開展研究時(shí),為了以納米級(jí)分辨率顯示其精細(xì)結(jié)構(gòu),通常會(huì)使用到電子顯微鏡。
電子顯微鏡有兩種類型:掃描電子顯微鏡(SEM)用于對(duì)樣本表面成像,以及需要使用極薄電子透明樣本的透射電子顯微鏡(TEM)。因此,使用電子顯微鏡對(duì)樣本內(nèi)部的精細(xì)結(jié)構(gòu)進(jìn)行成像時(shí),此類技術(shù)解決方案需要制作出非常薄的樣本切片。被稱為超顯微技術(shù)的樣本制備方法可以產(chǎn)生具有最小偽影的超薄切片(厚度20-150nm)。
在切片過程中,樣本的塊面(切割切片處)始終保持在一個(gè)平直的表面上,可供SEM進(jìn)行研究。當(dāng)截面在陣列中成像時(shí),就可以重建樣本的三維圖像。這種方法稱為陣列斷層掃描(AT)。超薄切片技術(shù)及其在AT中的應(yīng)用概述如下。
超薄切片技術(shù)
超薄切片技術(shù)主要用作透射電子顯微鏡(TEM)的樣本制備方法。它允許樣本的內(nèi)部結(jié)構(gòu)以納米級(jí)分辨率進(jìn)行可視化和分析。它以快速、干凈的方式制作超薄的樣本切片。超薄切片技術(shù)的一個(gè)主要優(yōu)點(diǎn)是切片內(nèi)電子透明區(qū)域的大小和均勻性以及切片產(chǎn)生的速度。
超薄切片技術(shù)可用于多種類型的樣本,包括生物學(xué)試樣和工業(yè)材料如聚合物(橡膠和塑料)以及韌性、硬質(zhì)或脆性材料(金屬或陶瓷)等。制備這些樣本薄片還有其他技術(shù),如聚焦離子束(FIB)銑削、離子刻蝕、三腳架拋光和電化學(xué)處理,但超薄切片技術(shù)在速度和清潔度方面具有優(yōu)勢(shì)。
陣列斷層掃描 (AT) 是一種用于細(xì)胞和蛋白質(zhì)結(jié)構(gòu)分析的高分辨率三維圖像重建方法。該技術(shù)利用掃描電子顯微鏡(SEM)或光學(xué)顯微鏡(LM)中超薄、樹脂包埋連續(xù)切片的有序陣列成像。AT技術(shù)能夠?qū)?xì)胞及蛋白質(zhì)結(jié)構(gòu)開展定量立體結(jié)構(gòu)分析和可視化觀察。其橫向和空間分辨率比傳統(tǒng)的共焦顯微鏡更理想。此外,通過生物試樣的部分自動(dòng)化檢測(cè)來實(shí)現(xiàn)更高的處理量。
超薄切片原理
利用陣列斷層掃描進(jìn)行TEM觀察以及實(shí)現(xiàn)最優(yōu)化3D重建時(shí),超薄有序的切片是一大前提。超薄切片機(jī)(如徠卡顯微系統(tǒng)的
EM UC7)則可以制作出此類超薄的樣本切片(厚度20 ~ 150 nm)。
要在透射電子顯微鏡中形成樣本的圖像,電子必須在不出現(xiàn)任何重大速度損失的情況下穿透樣本。樣本對(duì)電子輻射的滲透率部分取決于其質(zhì)量和厚度(厚度×密度),部分取決于電子顯微鏡的加速電壓。被試樣吸收的電子會(huì)導(dǎo)致熱量積聚,從而在物體中形成偽影。
然后通過SEM或LM(通常為熒光)對(duì)切片陣列成像。后續(xù)將陣列中的切片圖像合并在一起進(jìn)行3D圖像重建和分析。
很多超薄切片機(jī)的AT樣本制備涉及多個(gè)耗時(shí)繁瑣的手動(dòng)操作步驟。高級(jí)超薄切片機(jī)(如徠卡顯微系統(tǒng)
ARTOS 3D)則可通過試樣切片的自動(dòng)化處理來加速整個(gè)制備過程,最大限度縮短SEM或LM成像中的切片處理時(shí)間。
應(yīng)用圖像