土壤是一個具有明顯“生命”特征的類生命體,而不是惰性物質(zhì)的簡單堆砌。大量的微生物、植物和動物可以生產(chǎn)、分解和/或轉(zhuǎn)化土壤中數(shù)不盡的有機(jī)物和無機(jī)物。這些反應(yīng),大多數(shù)都需要土壤酶的催化,如果沒有土壤酶,土壤將喪失其功能,地球上所有的生命最終都將受到影響。
土壤酶活測定,是基于土壤加入底物培養(yǎng)過程中,反應(yīng)產(chǎn)物產(chǎn)生或反應(yīng)底物消耗的量進(jìn)行評價的。土壤酶活測量過程中,產(chǎn)物或底物的提取效率、測試土樣為風(fēng)干土還是鮮土、緩沖液的pH值、基質(zhì)濃度、土樣重量、反應(yīng)時間、溫度、反應(yīng)過程中有沒有搖動、反應(yīng)的化學(xué)計量、選擇一個合適的分析流程、反應(yīng)體系創(chuàng)建前樣品的保存或前處理、反應(yīng)過程是否需要輔助因子等必須考慮并加以適當(dāng)控制。所有這些因素都需要針對不同的土壤進(jìn)行仔細(xì)的評估和優(yōu)化,以提供最有效的測定土壤酶活,并確保反應(yīng)速率的唯一限制因子是土壤酶的濃度。
土壤酶學(xué)家通常不直接測量土壤中酶的濃度。土壤酶濃度的測定首先需要從土壤中提取特定的蛋白,然后對蛋白進(jìn)行定量。這是特別困難的,在很多情況下,也是沒有意義的。就生態(tài)學(xué)而言,最重要的是土壤酶的活性。與之不同,土壤酶學(xué)家的目標(biāo)是測量不同土壤中特定酶促反應(yīng)的活性。這需要在世界各地的實驗室都使用標(biāo)準(zhǔn)的反應(yīng)體系,以便提供可重復(fù)的結(jié)果。任何干擾這一目標(biāo)的行為,都將損害所獲得數(shù)據(jù)的價值。詳盡描述土壤酶反應(yīng)體系對于學(xué)術(shù)出版是極其重要的,因為它提供了一種標(biāo)準(zhǔn),使得一種土壤中的酶活能夠與另一種土壤中的酶活進(jìn)行合理的比較。此外,使用有效的酶活測定方法得到的研究結(jié)果,可提高我們對土壤酶在土壤中的作用的理解,包括許多重要的土壤過程或功能。
土壤酶反應(yīng)體系被設(shè)計用于確定土壤酶存在狀態(tài)下酶促反應(yīng)過程速率,從而獲得反應(yīng)體系中土壤酶的濃度。一般來說,偏好測量反應(yīng)產(chǎn)物的產(chǎn)生量。測定土壤中反應(yīng)產(chǎn)物濃度較低甚至不存在時反應(yīng)產(chǎn)物濃度的微小變化,要比測定反應(yīng)底物較高背景濃度時反應(yīng)底物濃度的微小變化,要容易得多。必須指出,在某些情況下,沒有好的分析方法來提取和檢測土壤酶促反應(yīng)的產(chǎn)物。在這種情況下,就需要測量反應(yīng)底物的消耗。
故弄清楚影響土壤酶活的因子,創(chuàng)建有效的、標(biāo)準(zhǔn)的土壤酶反應(yīng)體系對于研究土壤生物地球化學(xué)過程極其重要。
土壤酶可分成胞內(nèi)酶和胞外酶兩類。由于一些物質(zhì)太大,不能穿過細(xì)胞膜,進(jìn)入細(xì)胞內(nèi)部,所以胞外酶對于大分子物質(zhì)代謝特別重要。研究土壤胞外酶,對于理解整個土壤系統(tǒng)至關(guān)重要。
美國托萊多大學(xué)的K.R. Saiya-Cork等(
K.R. Saiya-Cork, et al., 2002)在Soil Biology & Biochemistry上報道了長期氮沉降對糖槭林土壤中胞外酶活性的影響,該文
創(chuàng)建了一個被廣泛使用的酶活反應(yīng)體系,測量并比較了氮沉降對凋落物和土壤有機(jī)質(zhì)分解過程中10種胞外酶活性的影響。這些酶活變化表明,N沉降增加了凋落物分解速率,抑制了SOM的分解。
土壤(A)和凋落物(B)胞外酶活性對氮沉降的響應(yīng)
該文的通信作者Robert L. Sinsabaugh更是土壤酶活研究領(lǐng)域的領(lǐng)軍人物,于08年在Ecology Letters上報道了全球尺度的土壤酶活化學(xué)計量研究成果(
Robert L. Sinsabaugh, et al., 2008);于09年在Nature上報道了土壤和沉積物中微生物有機(jī)養(yǎng)分獲取的土壤酶化學(xué)計量研究成果;于12年Annual Review of Ecology and Systematics上回顧了土壤酶化學(xué)計量與生態(tài)學(xué)理論。
近期,中國科學(xué)院成都生物研究所朱曉敏等(
Zhu Xiaomin, et al., 2020)以“
Differential effects of N addition on the stoichiometry of microbes andextracellular enzymes in the rhizosphere and bulk soils of an alpine shrubland”為題,在Plant Soil報道了氮添加對微生物和胞外酶化學(xué)計量的影響。胞外酶活性測量采用了K.R. Saiya-Cork等創(chuàng)建的酶活反應(yīng)體系,共計測量了高寒灌叢根際土和非根際土的4種胞外酶活性,其中,一種為有機(jī)碳分解酶(β-1,4-glucosidase,BG),兩種為有機(jī)氮分解酶(L-leucine aminopeptudase,LAP;β-N-acetylglucosaminidase,NAG),一種為有機(jī)磷分解酶(acid phosphate,AP),用于評價微生物的營養(yǎng)狀態(tài)。用Ln(BG): Ln(LAP+NAG),Ln(BG): LN(AP),Ln(LAP+NAG): Ln(AP)分別表示胞外酶的C:N,C:P,N:P化學(xué)計量比(
Sinsabaugh et al., 2009)。
結(jié)果表明,
氮添加顯著增加根際土的C、N、P分解酶活性,其中P分解酶活性增加最多,導(dǎo)致土壤酶的C:P和N:P比例顯著下降。根際土壤酶N:P比與植物、土壤和微生物的N:P比呈負(fù)相關(guān),說明在施氮條件下,增加植物和微生物對P的吸收,可能會逐漸加劇根際P限制。氮添加顯著提高非根際土C分解酶活性,并降低土壤酶的C:N比。同時,非根際土壤酶C:N比與土壤C:N比呈負(fù)相關(guān),但與植物C:N比無關(guān),說明氮添加可能加劇非根際微生物C限制。
氮添加對根際土和非根際土C、N、P獲取土壤胞外酶活性及其化學(xué)計量的影響
氮添加對根際土和非根際土的微生物生物量和酶活的影響以及地上-地下化學(xué)計量的相關(guān)性
關(guān)于土壤酶化學(xué)計量能否真實確定微生物的養(yǎng)分限制狀態(tài),也存在爭議,一些研究結(jié)果與預(yù)期不符。最近,日本林業(yè)和森林產(chǎn)品研究所的Taiki Mori (
Taiki Mori, 2020)在Soil Biology and Biochemistry上以“
Does ecoenzymatic stoichiometry really determine microbial nutrientlimitations?”為題,闡述了個人對土壤酶化學(xué)計量能否真實確定微生物的養(yǎng)分限制狀態(tài)爭議的觀點,贊同土壤酶化學(xué)計量理論,但鑒于纖維素只能提供C源,而幾丁質(zhì)、肽聚糖、蛋白質(zhì)等既是N源,也是C源,如果幾丁質(zhì)、肽聚糖、蛋白質(zhì)等作為主要C源,就需要增加以往表征N限制的酶(LAP、NAG等)去獲取C。基于該認(rèn)識,提出了相應(yīng)的概念模型。
區(qū)分基質(zhì)的土壤酶化學(xué)計量理論概念模型
參考文獻(xiàn)
1. Dick W A.
Development of a soil enzyme reaction assay[J]. Methods of soil enzymology, 2011, 9: 71-84.
2. Saiya-Cork K R, Sinsabaugh R L, Zak D R.
The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology and Biochemistry, 2002, 34(9): 1309-1315.
3. Sinsabaugh R L, Lauber C L, Weintraub M N, et al.
Stoichiometry of soil enzyme activity at global scale[J]. Ecology letters, 2008, 11(11): 1252-1264.
4. Sinsabaugh R L, Hill B H, Shah J J F.
Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009, 462(7274): 795-798.
5. Sinsabaugh R L, Follstad Shah J J.
Ecoenzymatic stoichiometry and ecological theory[J]. Annual Review of Ecology, Evolution, and Systematics, 2012, 43: 313-343.
6. Zhu X, Liu M, Kou Y, et al.
Differential effects of N addition on the stoichiometry of microbes and extracellular enzymes in the rhizosphere and bulk soils of an alpine shrubland[J]. Plant and Soil, 2020: 1-17.
7. Mori T.
Does ecoenzymatic stoichiometry really determine microbial nutrient limitations?[J]. Soil Biology and Biochemistry, 2020: 107816.