综合图区亚洲网友自拍|亚洲黄色网络|成人无码网WWW在线观看,日本高清视频色视频kk266,激情综合五月天,欧美一区日韩一区中文字幕页

                                English | 中文版 | 手機(jī)版 企業(yè)登錄 | 個人登錄 | 郵件訂閱
                                當(dāng)前位置 > 首頁 > 技術(shù)文章 > 種子質(zhì)量與安全檢驗的高光譜成像研究進(jìn)展

                                種子質(zhì)量與安全檢驗的高光譜成像研究進(jìn)展

                                瀏覽次數(shù):4113 發(fā)布日期:2019-8-20  來源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責(zé)任自負(fù)

                                種子質(zhì)量是植物育種和生產(chǎn)中的一個基礎(chǔ)性和關(guān)鍵性因素,可以通過種子的發(fā)芽率或理化特性來衡量,在農(nóng)業(yè)領(lǐng)域已變得越來越重要。一方面,優(yōu)質(zhì)種子是植物生長的良好開端,預(yù)示著豐收;另一方面,種子質(zhì)量通常與食品質(zhì)量密切相關(guān),如質(zhì)地、風(fēng)味和營養(yǎng)成分。為了滿足消費者的需求,種子在收獲后應(yīng)謹(jǐn)慎加工和儲存。在采收、加工和儲存過程中,需要一種快速、準(zhǔn)確、無損的檢測種子質(zhì)量的方法。高光譜成像作為一種非破壞性、快速的種子質(zhì)量和安全性評價方法,近年來備受關(guān)注。

                                高光譜成像技術(shù)結(jié)合了光譜技術(shù)和成像技術(shù)的優(yōu)點,可以同時獲取光譜和空間信息。也就是說,它可以同時獲得不均勻樣品的化學(xué)信息和化學(xué)成分的空間分布。高光譜技術(shù)在農(nóng)業(yè)、食品、醫(yī)藥等行業(yè)得到了廣泛的應(yīng)用。高光譜成像技術(shù)在種子行業(yè)的潛在或?qū)嶋H應(yīng)用包括種子活性、活力、缺陷、疾病、凈度檢測,種子成分測定。

                                本文總結(jié)和分析了高光譜技術(shù)在種子質(zhì)量和安全檢驗方面的發(fā)展,介紹了該技術(shù)在種子分類分級、活性和活力檢測、損傷(缺陷和真菌)檢測、凈度檢測和種子成分測定等方面的能力,綜述了該技術(shù)在種子質(zhì)量檢測和安全檢測中的應(yīng)用,包括分析的光譜范圍、樣品種類、樣品狀態(tài)、樣品數(shù)量、特征(光譜特征、圖像特征、特征提取方法)、信號模式等。

                                表1高光譜成像應(yīng)用于種子分類和分級的參考文獻(xiàn)摘要

                                Seed

                                Varieties

                                Features

                                Data analysis strategies

                                Main application type

                                Classification result (highest accuracy)

                                Spectra/image

                                Extraction/selection methods

                                Analysis level

                                Classification/regression methods

                                Barley, wheat and sorghum

                                1 variety of each kind of grain

                                Spectra

                                PCA

                                PWbprediction map and OWc(single kernels)

                                Grain topography classification

                                Black bean

                                3

                                Spectra and image

                                SPA, PCA, GLCM

                                OW (single kernels)

                                PLS-DA, SVM

                                Variety classification

                                98.33% (PLS-DA)

                                Grape seed

                                3 varieties, two growth soil

                                Spectra

                                PCA

                                OW (single kernels), PW PCA and  prediction map

                                GDA

                                Assess Stage of maturation of grape seeds

                                > 95%

                                Grape seed

                                3

                                Spectra and image

                                PCA

                                OW (single kernels)

                                SVM

                                Variety classification

                                94.30%

                                Maize

                                2 (transgenic and non-transgenic)

                                Spectra

                                PCA, CARS

                                PW PCA and prediction map, OW (single  kernels)

                                PLS-DA, SVM

                                Transgenic and non-transgenic  classification

                                99.5% (PLS-DA)

                                Maize

                                4 varieties, 3 crop years

                                Spectra

                                no

                                OW (single kernels)

                                LS-SVM

                                Variety classification

                                91.50%

                                Maize

                                4 varieties, 3 crop years

                                Spectra

                                no

                                OW (single kernels)

                                LS-SVM

                                Variety classification

                                94.80%

                                Maize

                                4 varieties, 3 crop years

                                Spectra

                                no

                                OW (single kernels)

                                LS-SVM

                                Variety classification

                                94.40%

                                Maize

                                17

                                Spectra and image

                                PCA, SPA, GLCM, MDS

                                OW (single kernels)

                                LS-SVM

                                Variety classification

                                94.40%

                                Maize

                                18

                                Spectra and image

                                PCA

                                OW (single kernels), PW PCA and  prediction map

                                PLS-DA

                                Textural, vitreous, floury and the third  type endosperm

                                85% (PLS-DA)

                                Maize

                                3 hardness

                                Spectra and image

                                PCA

                                PW PCA and prediction map, OW (single  kernels)

                                PLS-DA

                                Hardness classification

                                97% (PLS-DA)

                                Maize

                                14

                                Spectra

                                joint skewness-based wavelength selection

                                OW (single kernels)

                                LS-SVM

                                Variety classification

                                98.18%

                                Maize

                                3

                                Spectra and image

                                PCA

                                OW (single kernels)

                                SVM, RBFNN

                                Variety classification

                                93.85% (RBFNN)

                                Maize

                                6

                                Spectra and image

                                PCA, KPCA, GLCM

                                OW (bulk samples)

                                LS-SVM, BPNN, PCA, KPCs

                                Classes classification

                                98.89% (PCA-GLCM-LS-SVM)

                                Rice

                                4 origins

                                Spectra and image

                                PCA, GLCM

                                OW (single kernels)

                                SVM

                                Variety classification

                                91.67%

                                Rice

                                4

                                Spectra

                                PLS-DA, PCA

                                PW PCA and OW (bulk samples)

                                KNN, PLS-DA, SIMCA, SVM, RF

                                Seed cultivars classification

                                100% (SIMCA, SVM, and RF)

                                Soybean, maize and rice

                                3 of each kind of seed

                                Spectra

                                neighborhood mutual information

                                OW (single kernels)

                                ELM, RF

                                Variety classification

                                100% (ELM)

                                Waxy corn

                                4

                                Spectra and image

                                SPA, GLCM

                                OW (single kernels)

                                PLS-DA, SVM

                                Variety classification

                                98.2% (SVM)

                                Wheat

                                8

                                Image

                                WT, STEPDISC, PCA

                                PW and OW (bulk samples)

                                BPNN, LDA, QDA

                                Classes classification

                                99.1% (LDA)

                                Wheat

                                8

                                Spectra

                                STEPDISC

                                OW (bulk samples)

                                LDA, QDA, Standard BPNN, Wardnet BPNN

                                Variety classification

                                94–100% (LDA)

                                Wheat

                                5

                                Spectra

                                STEPDISC

                                PW PCA and OW (bulk samples)

                                LDA, QDA

                                Classes classification

                                90–100% (LDA)

                                表2 高光譜成像應(yīng)用于種子活力和活力檢測的參考文獻(xiàn)摘要

                                Seed

                                Varieties

                                Features

                                Data analysis strategies

                                Main application type

                                Classification result (highest accuracy)

                                Spectra/image

                                Extraction/selection methods

                                Analysis level

                                Classification/regression methods

                                Barley

                                1 variety, 8 treatments

                                Spectra

                                PCA, MNF

                                PWbprediction map and OWc(single kernels)

                                Maximum likelihood multinomial,  regression classifier

                                Germination level detection

                                97% when single kernels grouped into the  three categories

                                Corn

                                3 varieties, 2 treatments

                                Spectra

                                No

                                OW (single kernels)

                                PLS-DA

                                Viability prediction

                                > 95.6%

                                Cryptomeria japonica and Chamaecyparis  obtuse

                                2 treatments of each kind of seed

                                Spectra

                                No

                                OW (single kernels)

                                Spectral index

                                Viability prediction

                                98.30%

                                Cucumber

                                1 variety, 2 treatments

                                Spectra

                                No

                                OW (single kernels), PW prediction map

                                PLS-DA

                                Viability prediction

                                100%

                                Muskmelon

                                1 variety, 4 treatments

                                Spectra

                                VIP, SR, and SMC

                                OW (single kernels)

                                PLS-DA

                                Viability prediction

                                94.60%

                                Norway spruce

                                1 variety, 3 treatments

                                Spectra and image

                                L1-regularized logistic regression based  feature selection

                                OW (single kernels)

                                SVM

                                Viability prediction

                                > 93%

                                Pepper

                                1 variety, 2 treatments

                                Spectra

                                No

                                OW (single kernels), PW prediction map

                                PLS-DA

                                Germination level detection

                                > 85%

                                Tree seeds

                                3 varieties, 8 treatments

                                Spectra

                                LDA

                                OW (single kernels)

                                LDA

                                Germination level detection

                                > 79%

                                Wheat, barley and sorghum

                                B: 3 varieties W: 3 varieties S: 2,  varieties 6 treatments

                                Spectra

                                PCA

                                OW (single kernels), PW prediction map

                                PLS-DA, PLSR

                                Viability prediction

                                R = 0.92 (PLS-DA)

                                表3 高光譜成像應(yīng)用于種子質(zhì)量缺陷檢測的參考文獻(xiàn)摘要

                                Seed

                                Varieties

                                Features

                                Data analysis strategies

                                Main application type

                                Classification result (highest accuracy)

                                Spectra/image

                                Extraction/selection methods

                                Analysis level

                                Classification/regression methods

                                Mung bean

                                1 variety, 8 treatments

                                Spectra and image

                                PCA

                                OWb(single kernels)

                                LDA, QDA

                                Insect damage detection

                                > 82%

                                Soybean

                                1 variety, 5 treatments

                                Spectra and image

                                GLCM

                                OW (single kernels)

                                LDA, QDA

                                Insect damage detection

                                99% (QDA)

                                Wheat

                                1 variety, 4 insect varieties

                                Spectra and image

                                STEPDISC, GLCM, GLRM, PCA

                                OW (single kernels)

                                LDA, QDA

                                Insect damage detection

                                95.3–99.3%

                                Wheat

                                1 variety, 3 treatments

                                Spectra and image

                                PCA

                                PWcprediction map and OW (single kernels)

                                Spectral index

                                Seed sprouted detection

                                > 90%

                                表4 高光譜成像應(yīng)用于種子真菌損傷檢測的參考文獻(xiàn)摘要

                                Seed

                                Varieties

                                Features

                                Data analysis strategies

                                Main application type

                                Classification result (highest accuracy)

                                Spectra/image

                                Extraction/selection methods

                                Analysis level

                                Classification/regression methods

                                Barley

                                1 variety, 2 fungi

                                Spectra and image

                                PCA

                                PWbprediction map and OWc(single kernels)

                                LDA, QDA, MDA

                                Fungus (Ochratoxin  A and Penicillium) damage detection

                                > 82%

                                Canola

                                1 variety, 2 fungi,

                                Spectra and image

                                PCA

                                OW (single kernels)

                                LDA, QDA, MDA

                                Fungus (Aspergillus  glaucus and Penicilliumspp.) damage detection

                                > 90%

                                Corn

                                3 varieties, 5 treatments

                                Spectra

                                No

                                OW (single kernels), PW prediction map

                                PLS-DA

                                Fungus (Aflatoxin B1) damage detection

                                96.90%

                                Corn

                                1 variety, 3 treatments

                                Spectra

                                No

                                PW spectra

                                spectral index

                                Fungus (Aflatoxin A. flavus) damage  detection

                                93%

                                Corn

                                1 variety, 3 treatments

                                Spectra

                                PCA

                                OW (single kernels), PW PCA

                                LS-SVM, KNN

                                Fungus (Aflatoxin A. flavus) damage  detection

                                > 91% (KNN)

                                Hick peas, green peas, lentils, pinto  beans and kidney beans

                                5 different pulses, 2 fungi

                                Spectra and image

                                PCA

                                OW (single kernels), PW PCA

                                LDA, QDA

                                Fungus (Penicillium commune Thom, C.  and A. flavus Link, J.) damage detection

                                96%-100%

                                Maize

                                4 varieties

                                Spectra

                                PCA

                                OW (single kernels), PW prediction map

                                SVM, SVR

                                Fungus (Aflatoxin B1) damage detection

                                R2 = 0.77

                                Maize

                                1 variety, 5 treatments

                                Spectra

                                PCA, FDA

                                OW (single kernels), PW PCA

                                FDA

                                Fungus (Aflatoxin B1) damage detection

                                88%

                                Maize

                                1 variety, 5 treatments

                                Spectra

                                PCA

                                OW (single kernels)

                                FDA

                                Fungus (Aflatoxin B1) damage detection

                                98%

                                Maize

                                1 variety, 3 treatments

                                Spectra

                                No

                                OW (single kernels), PW prediction map

                                PLS-DA

                                Fungus (Fusarium) damage detection

                                77% (PLS-DA)

                                Maize

                                1 variety, nine treatments

                                Spectra

                                PCA, variable importance plots

                                OW (single kernels), PW PCA and  prediction map

                                PLSR

                                Fungus damage detection

                                R2 = 0.87

                                maize

                                1 variety, 2 fungi, 3 treatments

                                Spectra

                                No

                                OW (single kernels)

                                discriminant analysis

                                Fungus (Toxigenic and atoxigenic A.  flavus) damage detection

                                94.40%

                                Maize

                                12 varieties, 4 fungi

                                Spectra

                                PCA

                                OW (bulk samples), PW PCA

                                ANOVA, Fisher’s LSD test

                                Fungus (Aspergillus strains) damage  detection

                                Fisher’s LSD test

                                Oat50

                                1 variety, 4 treatments

                                Spectra

                                PLSR

                                OW (single kernels), PW prediction map

                                PLSR, PLS-LDA

                                Fungus (Fusarium) damage detection

                                R2 = 0.8

                                Peanut

                                1 variety, 2 treatments

                                Spectra

                                PCA

                                OW (single kernels), PW prediction map

                                PCA

                                Moldy kernel detection

                                98.73%

                                Peanut

                                1 variety, 2 treatments

                                Spectra

                                ANOVA, NWFE

                                OW (single kernels), PW prediction map

                                SVM

                                Fungus (Aflatoxin) damage detection

                                > 94%

                                Rice

                                1 variety, 6 treatments

                                Spectra

                                No

                                OW (bulk samples)

                                SOM, PLSR

                                Fungus (Aspergillus) damage detection

                                R2 = 0.97

                                Watermelon

                                1 variety, 2 treatments

                                Spectra

                                Intermediate PLS (iPLS)

                                OW (single kernels) PW prediction map

                                PLS-DA, LS-SVM

                                Fungus (Cucumber green mottle mosaic  virus) damage detection

                                83.3% (LS-SVM)

                                Watermelon

                                1 variety, 2 treatments

                                Spectra

                                Intermediate PLS (iPLS)

                                OW (single kernels), PW prediction map

                                PLS-DA, LS-SVM

                                Fungus (Acidovorax citrulli) damage  detection

                                > 90%

                                Wheat

                                4 varieties, 2 fungi

                                Spectra

                                PCA

                                OW (single kernels), PW spectra

                                LDA

                                Fungus (Fusarium) damage detection

                                > 91%

                                Wheat

                                33 varieties, 3 treatments

                                Spectra

                                No

                                OW (single kernels), PW spectra

                                spectral index

                                Fungus (Fusarium head blight) damage  detection

                                81%

                                Wheat

                                1 variety, 3 treatments

                                Spectra and image

                                PCA, STEPDISC

                                OW (single kernels)

                                LDA

                                Fungus (Fusarium) damage detection

                                92%

                                Wheat

                                1 variety, 3 fungi

                                Spectra and image

                                STEPDISC, GLCM, GLRM, PCA

                                OW (single kernels)

                                LDA, QDA, MDA

                                Fungus (Penicilliumspp., Aspergillus  glaucus group, and Aspergillus niger) damage detection

                                > 95%

                                Wheat

                                3 varieties

                                Spectra

                                PCA

                                OW (bulk, single kernels), PW PCA

                                PLS-DA, iPLS-DA

                                Fungus (Fusarium) damage detection

                                99%

                                高光譜成像是一個復(fù)雜的、多學(xué)科的領(lǐng)域,其目的是在不進(jìn)行單調(diào)的樣品制備情況下,同時對多種化學(xué)成分和物理屬性的含量和空間分布進(jìn)行有效和可靠的測量,因此為種子自動分級和缺陷檢測系統(tǒng)的設(shè)計提供了可能。本文概述的各種應(yīng)用表明,在種子分級、活力和活力檢測、缺陷和疾病檢測、清潔度檢測和種子成分測定方面,高光譜成像具有很大的應(yīng)用潛力?梢灶A(yù)見,采用該技術(shù)的實時種子監(jiān)測系統(tǒng)將在不久的將來滿足現(xiàn)代種子工業(yè)控制和分選系統(tǒng)的需求。

                                全文閱讀

                                Feng L, Zhu S, Liu F, et al, et al. Hyperspectral imaging for seed quality and safety inspection: a review. Plant Methods, 2019, 15(1): 1-25.

                                來源:上海澤泉科技股份有限公司
                                聯(lián)系電話:021-32555118
                                E-mail:michael.shen@zealquest.com

                                用戶名: 密碼: 匿名 快速注冊 忘記密碼
                                評論只代表網(wǎng)友觀點,不代表本站觀點。 請輸入驗證碼: 8795
                                Copyright(C) 1998-2024 生物器材網(wǎng) 電話:021-64166852;13621656896 E-mail:info@bio-equip.com