然而傳統(tǒng)電鏡由于為保證圖像質(zhì)量而需要高壓電子槍,因此需要使用大體積腔體和配套的低溫、真空設(shè)施才能夠工作。這不僅導(dǎo)致占地面積過大,還需要相當(dāng)?shù)馁Y金維持運(yùn)轉(zhuǎn)和專門的人員進(jìn)行操作。給使用帶來了極大的不便。
另外,雖然高電壓能夠帶來更好的電子順從性,但是基于碳基的有機(jī)物往往不能夠承受較高的電子束沖擊,因此在實(shí)際使用中往往必須使用電鏡的最低電壓來進(jìn)行觀測(cè)以避免損壞樣品,這極大地浪費(fèi)了大型電鏡本身的機(jī)能。而且由于有機(jī)物中的碳類物質(zhì)不能很好地吸收電子,使得有機(jī)物在大型電鏡中的襯度很低,往往需要使用金屬物質(zhì)進(jìn)行負(fù)染來提高襯度,而這不可避免的會(huì)破壞蛋白、DNA 等有機(jī)物的結(jié)構(gòu)。
因此低電壓透射電鏡將有望解決這一問題。雖然在傳統(tǒng)認(rèn)知中,高的電壓總會(huì)帶給圖像更好的成像效果。但在技術(shù)發(fā)展的當(dāng)下,即使只使用較低的電壓也能夠獲得較好的成像質(zhì)量,并且由于低電壓的低穿透力使得原本被忽略的細(xì)節(jié)圖像也能夠被呈現(xiàn)出來。
由于低壓電鏡所具有的獨(dú)特優(yōu)勢(shì)使得在近幾年中有越來越多的文獻(xiàn)報(bào)道使用了LVEM系列電鏡。下面就列舉了近一年中的部分發(fā)表文章中展示的電鏡照片:
Nimisha Bhattarai等使用LVEM5 TEM模式觀察線粒體和生理pH溶液環(huán)境下的nanoGUMBOS(有機(jī)鹽材料)的形態(tài)。
Claudel Mickael等使用LVEM5對(duì)CDs與bPEI600衍生物的納米TEM結(jié)構(gòu)表征。
Claudia Melissa等對(duì)冰川假單胞菌BNF20的形態(tài)使用LVEM5 SEM模式進(jìn)行觀測(cè)的圖像。
Adolfo Marican等使用LVEM5對(duì)環(huán)糊精衍生物凝膠CDHSA1(a-b)
和包裹有PDN(c-d)的CDHSA1進(jìn)行SEM圖像表征。
Hadi Ranji-Burachaloo等使用LVEM5拍攝TEM模式下的
有機(jī)聚合材料MOF(a)和rMOF(b)的納米結(jié)構(gòu)圖像。
總結(jié)
低壓透射電鏡具有體積小、易操作、高襯度、良好的成像質(zhì)量等特性。在近幾年中,使用這種電鏡進(jìn)行結(jié)構(gòu)表征的文章也越來越多。相信隨著生物分子機(jī)制研究的深入和納米材料、藥物的發(fā)展,這種小巧而靈活的低壓透射電鏡將會(huì)有更加寬廣的應(yīng)用前景。
參考文獻(xiàn)
1. C. Dazon, B. Maxit, O. Witschger, 2019, Comparison between a low-voltage benchtop electron microscope and conventional TEM for number size distribution of nearly spherical shape constituent particles of nanomaterial powders and colloids. Micron, 116, 124–129
2. de la Calle, I., Menta, M., Klein, M., Maxit, B., Séby, F., 2018. Towards routine analysis of TiO2 (nano-)particle size in consumer products: evaluation of potential techniques. Spectrochim. Acta B: Atom. Spectroscopy 147, 28–42.
3. Debia, M., Bakhiyi, B., Ostiguy, C., Verbeek, J.H., Brouwer, D.H., Murashov, V., 2016. A systematic review of reported exposure to engineered nanomaterials. Ann. Occup. Hyg. 60, 916–935.
4. Drummy, L.F., 2014. Electron microscopy of organic – inorganic interfaces: Advantages of low voltage. Ultramicroscopy 145, 74–79.
5. Loza, K., Diendorf, J., Sengstock, C., Ruiz-Gonzalez, L., Gonzalez-Calbet, J.M., Vallet-Regi, M., et al., 2014. The dissolution and biological effects of silver nanoparticles in biological media. J. Mater. Chem. B. 2, 1634–1643.
6. Nimisha Bhattarai, J. Michael Mathis, Mi Chen, Rocio L Perez, Noureen Siraj, Paul K.S. Magut, Karen McDonough, Girija Sahasrabudhe, and Isiah M Warner. 2018, Mol. Pharmaceutic, 15, 3837–3845
7. Xiaohong Zheng, Cheng Zhang, Jinfeng Xia, Guohong Zhou, Danyu Jiang, Shiwei Wang, XinLi, Yibo hen, Mengting Dai, Bing Wang, Qiang Li , 2019, Mesoporous tungsten oxide electrodes for YSZ-based mixed potential sensors to detect NO2 in the sub ppm-range, Sensors and Actuators B: Chemical, 284, 1, 575-581
8. Claudel Micka¨el,Fan Jiahui, Rapp Micka¨el, Pons Françoise and Lebeau Luc,2019,Influence of carbonization conditions on luminescence and gene delivery properties of nitrogen-doped carbon dots,RSC Adv., 2019, 9, 3493
9. Claudia Melissa, Muñoz-Villagrán, Katterinne N. Mendez, Fabian Cornejo, Maximiliano Figueroa, Agustina Undabarrena, Eduardo Hugo Morales, Mauricio Arenas-Salinas, Felipe Alejandro Arenas1, Eduardo Castro-Nallar and Claudio Christian Vásquez,2018, Comparative genomic analysis of a new tellurite-resistant Psychrobacter strain isolated from the Antarctic Peninsula, DOI 10.7717/peerj.4402
10. Adolfo Marican, Fabián Avila-Salas, Oscar Valdés, Sergio Wehinger, Jorge Villaseñor, Natalia Fuentealba, Mauricio Arenas-Salinas, Yerko Argandoña, Verónica Carrasco-Sánchez and Esteban F. Durán-Lara, 2018, Rational Design, Synthesis and Evaluation of CD-Containing Cross-Linked Polyvinyl Alcohol Hydrogel as a Prednisone Delivery Platform, Pharmaceutics 2018, 10(1), 30
11. Hadi Ranji-Burachaloo, Qiang Fu, Paul A. Gurr, Dave E. Dunstan and Greg G. Qiao, 2018, Improved Fenton Therapy Using Cancer Cell Hydrogen Peroxide, Australian Journal of Chemistry 71(10) 826-836