根據(jù)世界氣象組織WMO溫室氣體公報(第18期,2022/10/26),全球平均地表CO2、CH4和N2O的濃度持續(xù)增高,其中CO2為415.7±0.2 ppm,CH4為1908±2 ppb,N2O為334.5±0.1 ppb。
現(xiàn)有溫室氣體觀測方法包括遙感衛(wèi)星的柱濃度測量、大氣本底濃度測量、城市高塔大氣濃度測量、渦度相關(guān)通量觀測、近地面大氣廓線測量、土壤溫室氣體通量測量、地基傅里葉變換光譜法遙測等。對于更高時空分辨率的地表測量需求,如近地表溫室氣體泄漏監(jiān)測、特定區(qū)域溫室氣體排放強度評估、衛(wèi)星遙感溫室氣體數(shù)據(jù)驗證等,都需要創(chuàng)新的觀測技術(shù)和方法。
目前,遙感衛(wèi)星可用于大氣柱濃度溫室氣體的測量,結(jié)合使用高塔和無人機觀測,可以對區(qū)域尺度的溫室氣體排放進(jìn)行評估。其中,由于無人機溫室氣體觀測具有機動靈活的特點,可以幫助研究者們獲取更高時空分辨率的數(shù)據(jù),成為衛(wèi)星遙感和定點高塔觀測數(shù)據(jù)的有益補充。圖源/ Bing Lu等,2020
前人的部分工作包括:在固定翼飛機上(SkyArrow ERA,意大利Magnaghi Aeronautica S.p.A.公司)搭載LI-7500 二氧化碳和水汽分析儀(Gioli B等,2006,2007;Carotenuto F等,2018),測量大氣邊界層的CO2通量以及估算點源CO2釋放強度;搭載LI-7700甲烷分析儀(Gasbarra D等,2019),研究垃圾填埋場的CH4排放。
N2O: 0.20ppb@330ppb(5s數(shù)據(jù)平均)
LI-7825精度
應(yīng)用案例
A Pilot Experiment
使用機載高精度CH4、CO2溫室氣體測量平臺,研究某工業(yè)園區(qū)的溫室氣體排放。
根據(jù)以上條件,飛行需要滿足的低度應(yīng)大于粗糙度子層(通過風(fēng)溫濕廓線確定,或估算為研究區(qū)內(nèi)建筑物平均高度的3倍),并位于近地層內(nèi)。無人機應(yīng)盡量保持勻速運動并平穩(wěn)飛行,俯仰角不大于5°,橫滾角不大于20°,盡量保持與地面的相對高度穩(wěn)定(仿地飛行)。需要在大氣邊界層湍流發(fā)展顯著的時間段開展測量,一般為上午10:00至下午4:00。同時,為了盡可能減少垂直輸送方向上的誤差,風(fēng)速以2-3級為宜,避免在陰天、雨天等不利氣象條件下開展監(jiān)測。
采用基于控制體積的質(zhì)量守恒法對園區(qū)開展走航式測量,此方法也稱為自上而下排放強度反演算法(Top-down Emission Rate Retrieval Algorithm, TERRA)。根據(jù)對園區(qū)不同高度監(jiān)測斷面的測量數(shù)據(jù),計算得到東西南北四個斷面的平流通量以及垂直向上的溫室氣體排放強度。飛行中的機載高精度CH4、CO2溫室氣體測量平臺
樣地與方法
Materials and Methods
該樣地平均海拔1400m,年降雨量小于300mm,主導(dǎo)風(fēng)向偏西風(fēng)。在2022年12月進(jìn)行試飛。主要進(jìn)行兩方面測量:(1)背景樣地大氣CH4、CO2濃度垂直廓線;(2)沿工業(yè)園區(qū)外圍飛行,測量垂直大氣方向上CH4和CO2濃度。另外,飛行過程中會同步采集風(fēng)向、風(fēng)速、空氣溫濕度、大氣壓強、經(jīng)緯度坐標(biāo)、海拔信息等。測量航跡
原始數(shù)據(jù)質(zhì)量控制QA/QC
采用滑動均值濾波方法對所有數(shù)據(jù)進(jìn)行異常值檢驗,對大于5倍測量數(shù)據(jù)標(biāo)準(zhǔn)差的點位,標(biāo)記為異常值并剔除,用線性插值方法進(jìn)行數(shù)據(jù)插補。一個測量架次,如果異常數(shù)據(jù)超過30%,標(biāo)記為無效測量,需要重新補測。
實驗結(jié)果
Results
背景樣地大氣廓線
實驗結(jié)論
Conclusions
使用機載高精度N2O、CH4、CO2溫室氣體測量平臺,結(jié)合數(shù)學(xué)模型,能夠?qū)μ囟▍^(qū)域的溫室氣體排放強度進(jìn)行定量評估。【1】世界氣象組織溫室氣體公報 - 第18期
【2】Bing Lu, Phuong D. Dao, Jiangui Liu, Yuhong He, Jiali Shang. 2020. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sensing 12(16): 1-44.
【3】Carotenuto F, Gualtieri G, Miglietta F, et al. Industrial point source CO 2 emission strength estimation with aircraft measurements and dispersion modelling[J]. Environmental monitoring and assessment, 2018, 190: 1-15.
【4】Gasbarra D, Toscano P, Famulari D, et al. Locating and quantifying multiple landfills methane emissions using aircraft data[J]. Environmental Pollution, 2019, 254: 112987.
【5】Gioli B, Miglietta F, Vaccari F P, et al. The Sky Arrow ERA, an innovative airborne platform to monitor mass, momentum and energy exchange of ecosystems[J]. 2006.