多光譜光誘導(dǎo)瞬變快速重復(fù)熒光儀 LIFT-FRR 是由著名科學(xué)家和發(fā)明人Zbigniew S. Kolber博士設(shè)計(jì)的第三代海洋浮游植物光合作用測量系統(tǒng)。
LIFT-FRR用一系列閃光來激發(fā)光合并測量葉綠素?zé)晒庑盘?hào)的變化,通過熒光信號(hào)的變化來反演光合特性,例如光系統(tǒng)II的有效吸收截面積、光合效率、光合電子傳遞動(dòng)力學(xué)、非光化學(xué)淬滅、受體側(cè)類胡蘿卜素淬滅、供體側(cè)P680淬滅、PQ庫的大小、瞬時(shí)光曲線(Instantaneous light curve, ILC)等。
LIFT-FRR配備445nm、470nm、505nm、540nm和590nm五種激發(fā)波長,以及快速重復(fù)測量(FRR)模式和連續(xù)激發(fā)光(CI)模式。在CI模式下還可以使用730nm的遠(yuǎn)紅光。
LIFT-FRR配備軟件控制的電動(dòng)濾光片輪,可以在6個(gè)熒光發(fā)射通道間切換(默認(rèn)配置685nm的熒光,另外5個(gè)波段可以根據(jù)客戶需求選配)。
LIFT-FRR配備連續(xù)流動(dòng)樣品池,和兩通道步進(jìn)電機(jī)驅(qū)動(dòng)的蠕動(dòng)泵,可以由軟件控制泵的速率、方向和時(shí)間。
LIFT-FRR的葉綠素濃度檢測限為0.1 ug/L。
LIFT-FRR除了可以用比色皿單次測量和連續(xù)流動(dòng)測量外,還可以連接光纖進(jìn)行外置測量。
海洋屆最主流的三代浮游植物熒光儀歷史進(jìn)程
1. 1986年Kolber博士和Falkowski教授在Brookhaven國家實(shí)驗(yàn)室發(fā)明了
“泵和探針法”熒光儀,最早實(shí)現(xiàn)了光系統(tǒng)功能截面積的測量,但所需測量時(shí)間比較長(10-20min);
2. 1992年Kolber博士和Falkowski教授發(fā)明了
快速重復(fù)熒光技術(shù)(Fast Repetition Rate, FRR)熒光儀,利用一系列微秒級(jí)矩形脈沖電流來產(chǎn)生矩形激發(fā)光信號(hào),能夠在1秒內(nèi)測量光合效率、光系統(tǒng)功能截面積和光合電子傳遞動(dòng)力學(xué),而且比“泵和探針法”的靈敏度提高了100倍。后來Kolber博士在MBARI和加州大學(xué)圣克魯斯分校工作期間,為FRR熒光儀增加了測量非光化學(xué)淬滅、類胡蘿卜素淬滅、供體側(cè)淬滅、PO庫還原態(tài)和瞬時(shí)光響應(yīng)曲線的功能。
3. 2012年,Kolber博士開始將他之前發(fā)明的
光誘導(dǎo)熒光瞬變技術(shù)(Light-Induced FluorescenceTransient, LIFT)導(dǎo)入FRR熒光儀,由此誕生了
LIFT-FRR熒光儀。LIFT-FRR允許連續(xù)調(diào)制驅(qū)動(dòng)電流,使得激發(fā)光信號(hào)的分辨率達(dá)到100ns(時(shí)間分辨率提高了10倍!),這極大提高了儀器的測量性能。
涉及這三代熒光儀的核心文獻(xiàn):1. Kolber, Z. S., J. Zehr, and P. G. Falkowski.1988. Effects of growth irradiance and nitrogen limitation on photosyntheticenergy conversion in Photosystem II.
Plant Physiol. 88, 923 929.
2. Kolber, Z. S, K. D. Wyman, and P. G. Falkowski.1990. Natural variability in photosynthetic energy conversion efficiency: afield study in the Gulf of Maine.
Limnol. Oceanogr. 35,72 79.
3. Falkowski,P.G., D. Ziemman, Z. S. Kolber, and P. K. Bienfang.1991. Nutrient pumping and phytoplankton response in a subtropical mesoscaleEddy.
Nature 352, 55 58.
4. Kolber, Z. S. and P. G. Falkowski.1993. Use of active fluorescence to estimate phytoplankton photosynthesis in situ.
Limnol. Oceanogr. 38, 1646 1665.
5. Kolber Z.S., R. T. Barber, K. H. Coale,S. E. Fitzwater, R. M. Greene, K. S. Johnson, S. Lindley, and P. G. Falkowski.1994 Iron limitation of phytoplankton photosynthesis in the Equatorial Pacific Ocean.
Nature 371, 145 149.
6. Kolber, Z. S., O. Prasil,and P. G. Falkowski.1998. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques. I. Defining methodology and experimental protocols.
Biochem. Biophys.Acta 1367, 88-106
7. Behrenfeld,M. J., and Z. S. Kolber. 1999. Wide spread iron limitation of phytoplankton in the South Pacific Ocean.
Science, 283, 840-843
8. Kolber, Z. S, C. L. Van Dover, R. A. Niederman,& P. G. Falkowski. Bacterial photosynthesis in surface waters of the open ocean. 2000.
Nature 407, 177-179.
9. Kolber, Z. S., F. G. Plumley, A. S. Lang, J. T. Beatty, R. E. Blankenship, C. L. VanDover,C. Vetriani,M. Koblizek,C. Rathgeber, and P. G. Falkowski. 2001. Contribution of Aerobic Photoheterotrophic Bacteria to the Carbon Cyclein the Ocean.
Science 292, 2494-2495
10. Kolber Z. S. Energy Cycle in the Ocean: Powering the Microbial World (2007)
Oceanography 20, 82-91, 2007
LIFT-FRR技術(shù)代表用戶
- ?松梨谘芯恐行模绹
- 美國沙漠研究所
- 澳大利亞國立大學(xué)地球科學(xué)研究院
- 俄勒岡州立大學(xué)植物學(xué)與植物病理系
- 澳大利亞麥考瑞大學(xué)化學(xué)與分子生物學(xué)系
- 悉尼理工大學(xué)
- 加拿大不列顛哥倫比亞大學(xué)地球與海洋科學(xué)系
- 加拿大蒙特埃里森大學(xué)等等
LIFT-FRR技術(shù)代表文獻(xiàn)
- Brown M, Penta W B, Jones B, Behrenfeld M.The ratio of single-turnover to multiple-turnover fluorescence variespredictably with growth rate and cellular chlorophyll in the green alga Dunaliella tertiolecta.Photosynthesis Research, 2019, 140(1): 65-76.
- Lewis K M, Arntsen A E,Coupel P,Joy-Warren H, Lowry K E, Matsuoka A, Mills M M, van Dijken G L, Selz V, Arrigo K R. Photoacclimation of Arctic Ocean phytoplankton to shifting light and nutrient limitation. Limnology and Oceanography, 2019, 64(1): 284-301.
- Read R W, Vuono D C,Neveux I, Staub C, Grzymski J J. Coordinated down regulation of the photosynthetic apparatus as a protective mechanism against UV exposure in the diatom Corethronhystrix. Applied Microbiology and Biotechnology, 2019, 103: 1837-1850..
- Schuback N, Tortell P D.Diurnal regulation of photosynthetic light absorption, electron transport and carbon fixation in two contrasting oceanic environments. Biogeosciences, 2019, 16: 1381-1399.
- Hoppe C J M, Schuback N, Semeniuk D,Giesbrecht K, Mol J, Thomas H, Maldonado M T, Rost B, Varela D E, Tortell P D.Resistance of Arctic phytoplankton to ocean acidification and enhanced irradiance.Polar Biology, 2018, 41(3): 399-413.
- Mills M M, Brown Z W, Laney S R, Ortega-Retuerta E, Lowry K E, van Dijken G L, Arrigo K R. Nitrogen Limitation of the Summer Phytoplankton and Heterotrophic Prokaryote Communities in the Chukchi Sea. Fronties in Marine Science, 2018, 5:362. doi:10.3389/fmars.2018.00362
- Samanta M, Ellwood M J, Strzepek R F. Zinc isotope fractionation by Emiliania huxleyi cultured across a range of free zinc ion concentrations. Limnology and Oceanography, 2018, 63(2): 660-671.
- Selz V, Laney S, Arnsten A E, Lewis K M, Lowry K E, Joy-Warren H L, Mills M M, van Dijken G L, Arrigo K R. Ice algal communities in the Chukchi and Beaufort Seas in spring and early summer: Composition, distribution, and coupling with phytoplankton assemblages. Limnologyand Oceanography, 2018, 63(3): 1109-1133.
- Selz V, Lowry K E, Lewis K M, Joy-Warren H L, van de Poll W, Nirmel S,Tong A, Arrigo K R. Distribution of Phaeocystis antarctica-dominated sea ice algal communities and their potential to seed phytoplankton across the western Antarctic Peninsula in spring. Marine Ecology Progress Series,2018, 586: 91-112.
- HoppeC J M, Schuback N, Semeniuk D M,Maldonado M T, Rost B. Functional Redundancy Facilitates Resilience of Subarctic Phytoplankton Assemblages toward Ocean Acidification and High Irradiance.Frontiersin Marine Science, 2017, 4:229. doi:10.3389/fmars.2017.00229
- Hussherr R, Levasseur M, Lizotte M, Tremblay J-E, Mol J, Thomas H, Gosselin M, Starr M,Miller L A, Jarnikova T, Schuback N, Mucci A. Impact of ocean acidification on Arctic phytoplankton blooms and dimethylsulfide concentration under simulated ice-free and under-ice conditions. Biogeosciences, 2017, 14: 2407-2427.
- Levin R A, Suggett D J, Nitschke M R, van Oppen M JH, Steinberg P D. Expanding the Symbiodinium(Dinophyceae, Suessiales) Toolkit Through Protoplast Technology. Journalof Eukaryotic Microbiology, 2017, 64(5): 588-597.
- Schuback N, Hoppe C J M, Tremblay J-E, Maldonado M T, Tortell P D. Primary productivity and the coupling of photosynthetic electron transport and carbon fixation in the Arctic Ocean. Limnology and Oceanography, 2017, 62(3): 898-921.
- Shilova I N, Mills M M, Robidart J C,Turk-Kubo K A, Bjorkman K M, Kolber Z, Rapp I, van Dijken G L, Church M J, Arrigo K R, Achterberg E P, Zehr J P. Differential effects of nitrate, ammonium, and urea as N sources for microbial communities in the North Pacific Ocean. Limnology and Oceanography, 2017, 62(6): 2550-2574.
- SzaboM, Larkum A WD, Suggett D J, Vass I, Sass L, Osmond B, Zavafer A,Ralph P J, Chow W S. Non-intrusive Assessment of Photosystem II and PhotosystemI in Whole Coral Tissues. Frontiers in Marine Science, 2017, 4: 269. doi:10.3389/fmars.2017.00269
- Schuback N, Flecken M, Maldonado M T, Tortell P D. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific. Biogeosciences, 2016, 13: 1019-1035.
慧諾瑞德(北京)科技有限公司(PhenoTrait)技術(shù)團(tuán)隊(duì)具有近20年葉綠素?zé)晒馓貏e是藻類葉綠素?zé)晒饨?jīng)驗(yàn),是Kolber博士的密切合作伙伴,將與Kolber博士一起為您提供高質(zhì)量產(chǎn)品和專業(yè)服務(wù)。